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Abstract

While multiagent planning research has largely
concentrated on distributing a planning problem
or resolving conflicts among collaborative agents’
plans, it has focused less on communication
constraints, real-time issues, and negotation of
self-interested agents. In domains where agents
that interleave planning and execution have varying
degrees of interaction and different constraints
on communication and computation, agents will
require different coordination protocols in order
to efficiently reach consensus in real time. We
briefly describe a largely unexplored class of
real-time, distributed planning problems (inspired
by interacting spacecraft missions), new challenges
they pose, and a general approach to solving the
problems. These problems involve self-interested
agents that have infrequent communication but co-
ordinate over joint activities and shared resources.
We describe a Shared Activity Coordination
(SHAC) framework that provides a decentralized
algorithm for negotiating the scheduling of shared
activities over the lifetimes of multiple agents,
a soft real-time approach to reaching consensus
during execution with limited communication,
and a foundation for customizing protocols for
negotiating planner interactions. We apply SHAC
to a realistic simulation of interacting Mars
spacecraft and illustrate the simplicity of protocol
development.

1 Introduction
Interacting agents that interleave planning and execution

must reach consensus on their commitments to each other be-
fore executing interdependent activities. When interleaving
planning and execution, an agent adjusts its planned activities
as it gathers information about the environment and encoun-
ters unexpected events. Interacting agents coordinate these
adjustments to manage commitments with each other, but in
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the presence of communication constraints, reaching consen-
sus on these commitments must be planned to avoid incon-
sistent execution. Demand for this kind of autonomous agent
technology is growing for space applications. Autonomous
spacecraft promise new capabilities and cost improvements
in exploring the solar system. Spacecraft (and rovers) that
explore other planets have intermittent, delayed communica-
tion with Earth, requiring that they be able to manage their
resources and operate for long periods in isolation. The com-
mon approach to autonomous decision making is to place in-
tegrated data analysis, planning, and execution systems on-
board the spacecraft.

In addition, there is a growing trend toward multi-
spacecraft missions. Over forty multi-spacecraft missions
have been proposed, including formation flying teams and
over 16 planned missions to Mars in the next decade. These
spacecraft will coordinate measurements, share data, and
route data to and form Earth. Separate missions, such as
those to Mars have their own budgets, experiments, and oper-
ations teams. As such, the spacecraft represent self-interested
entities that benefit from collaborative interactions.

But, even a single spacecraft has multiple science instru-
ments for executing different goals of different scientists, and
different operations groups will have different areas of ex-
pertise over different subsystems for control. These differ-
ent groups negotiate over mission plans in the same way that
different Mars missions must collaborate over spacecraft in-
teractions. Whether this negotiation is done on-board or on
Earth, there is a distributed operations planning problem that
benefits from automation. Both also have real-time aspects.
On-board systems must plan safely over near- and long-term
horizons, and ground systems must also converge on planss
for daily, weekly, and lifelong mission operations. Ground
planning also suffers from communication constraints. Scien-
tists from different universities or opposite sides of the globe
will intermittently provide inputs and respond on an irregu-
lar basis. A collaboration/negotiation system must be built
around communication constraints to meet hard deadlines for
coming to consensus on consistent operations plans.

In this work, we will briefly characterize this general prob-
lem in terms of activity interaction types and communica-
tion constraints and discuss its challenges. The field of
multiagent planning has largely focused on fully coopera-
tive planning and execution [Decker, 1995; desJardins and



Wolverton, 1999; Tambe, 1997; Grosz and Kraus, 1996;
Clement and Durfee, 2000]. Market-based agent systems
address near-term resource negotiation but have rarely ad-
dressed how near-term decisions affect longer-term goals.
Multiagent systems built for Robocup Soccer competitions
mainly address collaborative multiagent execution in an ad-
versarial environment and have limited planning capabilities.
These approaches do not adequately address real-time plan-
ning for self-interested agents.

We also present a framework for Shared Activity Coordina-
tion (SHAC). SHAC consists of an algorithm for continually
coordinating agents and a foundation for rapidly designing
and implementing coordination protocols based on a model
of shared activities. In the same fashion that a real-time plan-
ning system must commit to actions to pass to an execution
system, a real-time coordination system must additionally es-
tablish consensus on shared activities before they are exe-
cuted based on communication constraints. Our ultimate goal
is to create interacting agents that autonomously adjust their
coordination protocols with respect to unexpected events and
changes in communication or computation constraints so that
the agents can most efficiently achieve their goals.

First we characterize a class of real-time, self-interested
multiagent planning problems. Then we describe the shared
activity model, the SHAC algorithm, and its interface to the
planner. We also specify some generic roles and protocols
using the SHAC framework that build on prior coordination
mechanisms. In addition, we present an algorithm for deter-
mining how long a protocol will reach consensus under par-
ticular communication restrictions. Then we describe how
our implementation of SHAC currently is used to coordinate
the communication of two rovers and three orbiters in a sim-
ulated Mars scenario. We follow with future research needs
revealed in this scenario and comparisons to related work.

2 Continual Coordination Problem
As mentioned before, agents that interleave planning and exe-
cution must commit near-term activities to the execution sys-
tem while receiving feedback in the form of state updates and
activity performance. One such continual planning system,
CASPER (Continuous Activity Scheduling Planning Execu-
tion and Replanning) identifies the period when the planner
commits activities to the execution system as a commit win-
dow [Chien et al., 2000]. While the planner must resolve
conflicts on activities before they are committed to execution,
distributed planning agents must additionally reach consen-
sus on team interactions before execution. As explored in
the team plan model given by TEAMCORE [Tambe, 1997;
Pynadath et al., 1999], formalizations of Shared Plans [Grosz
and Kraus, 1996], and coordination interactions of TAEMS
[Decker, 1995], these interactions could include� use and replenishment of shared resources,� joint actions for achieving a mutually beneficial subgoal,� choice of methods for achieving a team subgoal,� participation and role assignments in a joint plan, and� proposals and commitments of the above.

However, reaching consensus on these interactions is com-
plicated when the agents can only communicate intermit-

tently. Depending on the number of agents involved in a par-
ticular interaction, a consensus protocol may need to be ini-
tiated far in advance and negotiations settled far in advance
of execution. Thus, for any particular set of interactions, a
consensus window, within which the agents must limit nego-
tiation and establish agreement, should be defined. For exam-
ple, if three agents must negotiate a joint action in advance of
execution but can only communicate pairwise in disjoint time
windows, a consensus window must extend at least to cover
windows connecting all three agents. Inside the consensus
window, a simple protocol eliminating negotiation (such as
all agree or reject) must be employed to guarantee consensus.
Interactions beyond the consensus window can be negotiated
with more elaborate protocols.

We informally describe the continual coordination problem
because our approach is intended to be general to the capabil-
ities of the individual planning and execution systems. The
continual coordination problem can be specified generally as
a continual planning domain and problem instance for each
agent as well as communication constraints between agents.
Continual planning problems have an evolving set of goals
(as opposed to a single goal) and performance is measured
as a function of the goals successfully achieved (executed)
within a time horizon. The multiagent aspect of the problem
is that interactions (such as those listed previously) create de-
pendencies between the planning and execution systems, over
which the agents must coordinate. The communication con-
straints can be time windows within which subsets of agents
can communicate, the reliability of communication, the costs
of communication (e.g. privacy), the bandwidth of channels,
etc. These constraints determine how the agents can achieve
consensus for a particular communications protocol.

Thus, many decisions must be made in the design of an
efficient continual coordination system. What planning and
execution systems are appropriate? What protocols should
be used for negotiation and consensus? How should the con-
sensus window be specified? Instead of providing a general
solution to all of these questions, we describe an implemented
framework for designing and evaluating protocols to negoti-
ate interactions and establish consensus.

3 SHAC

Our approach, called Shared Activity Coordination (SHAC),
provides a general algorithm for interleaving planning and
the exchange of plan information based on shared activities.
Agents coordinate their plans by establishing consensus on
the parameters of shared activities. Figure 1 illustrates this
approach where three agents share one activity and two share
another. The constraints denote equality requirements be-
tween shared activity parameters in different agents. The left
vertical box over each planner’s schedule represents a com-
mit window that moves along with the current time. A con-
sensus window is shown to the right of the commit window,
within which consensus must be quickly established before
committing. Since consensus is hard to maintain when all
agents can modify a shared activity’s parameters at the same
time, agents must participate in different coordination roles
that specify which agent has control of the activity. As shown
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Figure 1: Shared activity coordination

in the figure, SHAC interacts with the planning and execu-
tion by propagating changes to the activities, including their
parameters and constraints on the values of those parameters.

SHAC continually coordinates by interfacing to a com-
bined planning/execution system that responds to failures
and state updates from the execution system. Our imple-
mentation interfaces with one such continual planning sys-
tem, CASPER, mentioned in the previous section. Instead of
batch-planning in episodes, CASPER continually adapts near
and long-term activities while re-projecting state and resource
profiles based on updates from sensors.

3.1 Shared Activities

The model of a shared activity is meant to capture the in-
formation that agents must share, including control mecha-
nisms for changing that information. A shared activity is a tu-
ple �����	�
����
���
��
� , ����
��������
��

� , ���
�����
���
��� ,  �
������!���"�$#%�&#&��� ,�����'�$�&�
�	#(���)��* . The parameters are the shared variables and
current values over which agents must reach consensus by
the time the activity executes. The agent roles determine the
local activity of each agent corresponding to the joint action.
To provide flexible coordination relationships, the role activ-
ities of the shared activity can have different conditions and
effects as specified by the local planning model. The shared
parameters map to local parameters in the role activity.

For example, as shown by the shared activity instance in
Figure 2, a data communication activity can map one agent
to a receive role activity and another to a send role activ-
ity. Shared parameters could specify the start time, duration,
transfer rate, and data size of the activity. The data size is
depleted from the sender’s memory resource but added to the
receiver’s memory. The agents could have separate power us-
ages for transmitting and receiving. In this case the resources
are not shared. Another shared activity could be the use of a
common transport resource. Although one agent in an active
transit role actually changes position, other agents in passive
roles have local activities that only reserve the transport re-
source.

Protocols are mechanisms assigned to each agent (or role)
that allow them to change constraints on a shared activity, the
set of agents assigned to the activity, and their roles. In Figure

2, both agents use an argumentation protocol to negotiate the
scheduling and attributes of the communication.

The shared decomposition enables agents to select differ-
ent team methods for accomplishing a higher level shared
goal. Specifically, the decomposition is a set of shared
subactivities. The agents can choose the decomposition from
a pre-specified set of subactivity lists. For example, a joint
observation among orbiters could decompose into either
(measure, process image, downlink) or (measure,
downlink).

3.2 Constraints
Constraints are created by agents’ protocols to restrict sets
of values for parameters (parameter constraints) and permis-
sions for manipulating the parameters, changing constraints
on the parameters, and scheduling shared activities (permis-
sion constraints). These constraints restrict the privileges (or
responsibilities) of agents in making coordinated planning de-
cisions. By communicating constraints, protocols can come
to agreement on the scheduling of an activity without sharing
all details of their local plans.

A parameter constraint is a tuple �+���,
���� , �-�	���	��
���
$� ,. �	�+/-
0�$
��)* . The ����
���� denotes who created the constraint.
Some protocols differentiate their treatment of constraints
based on the agent that created them. For example, the
asynchronous weak commitment algorithm prioritizes agents
so that lower-priority agents only conform to higher-priority
agent constraints [Yokoo and Hirayama, 1998]. Agents can
add to their constraints on a parameter, replace constraints, or
cancel them. A string parameter constraint, for example, can
restrict a parameter to a specific set of strings. An integer or
floating point variable constraint is a set of disjoint ranges of
numbers. Scheduling constraints can be represented as con-
straints on a start time integer parameter. This is shown in
Figure 2 where the rover restricts the start time of the com-
munication between two eight minute intervals.

Permission constraints determine how an agent’s planner
is allowed to manipulate shared activities. The following per-
missions are currently defined for SHAC:� parameters - change parameter values� move - set start time



shared_activity communicate comm_id_12 {
time start_time = 2004-302:09:30:00; // date
int duration = 200; // seconds
int data_size = 25600; // 25.6 Mbits
real xmit_rate = 128.0; // Kbps
int priority = 1; // critical
roles =

receive by orbiter,
send by rover;

protocols =
receive argumentation,
send argumentation;

permissions =
receive (move, delete, xmit_rate),
send (delete, data_size, priority);

parameter_constraints =
rover start_time = ([2004-302:09:30:00, 2004-302:09:38:00],

[2004-302:18:30:00, 2004-302:18:38:00]);
}

Figure 2: An instance of a shared communication activity between a rover and orbiter

� duration - change duration of task� delete - remove from plan� choose decomposition - select shared subactivity of an��� activity� add - add to plan1� constrain - send constraints to other agents

In the communication example in Figure 2, the receiver is
allowed to reschedule (move) the activity, delete it, or change
the transmission rate. The sender cannot move the activity,
but can delete it and change the requested size and priority.

3.3 Coordination Algorithm

The SHAC algorithm negotiates the scheduling and parame-
ter values of shared activities until consensus is reached. Fig-
ure 3 gives a general specification of the algorithm. SHAC is
implemented independently of the planner. Steps 1 through
3 are handled by the planner through an interface to SHAC.
Step 4 invokes the protocols that potentially make changes
to refocus coordination on resolving shared activity conflicts
and improving plan utility. SHAC sends modifications of
shared activities and constraints to sharing agents in step 5.
In step 6, shared activities and constraints are updated based
on changes received from other agents.

Ignoring coordination, a continuous planner must deter-
mine when it is appropriate to release activities to the exe-
cution system. In some cases, an activity involved in a con-
flict may either be released (requiring the planner to recover
from potential failures) or postponed (to allow the planner to
recover before a failure occurs). CASPER keeps a commit
window (an interval between the current time and some point
in the near future) within which activities cannot be modified
and passes these activities to the execution system.

1This permission applies to a class of shared activities (i.e. an
agent may be permitted to instantiate a shared activity of a particular
class).

This interaction with the executive becomes more compli-
cated when agents share tasks. SHAC must ensure that, when
a shared activity is released, all agents release it while in con-
sensus on the start time and other parameters of the task. Ide-
ally the agents should establish consensus before the commit
window. SHAC avoids changes in the commit window by
keeping a consensus window that extends from the commit
window forward by some period specific for the activity. As
time moves forward, the windows extend forward. When a
shared activity moves into the consensus window, the agents
switch to the simple consensus protocol to try and reach con-
sensus before the activity moves into the commit window.

4 Protocols
In general, protocols determine when to communicate, what
to communicate, and how to process received communica-
tion. During each iteration of the loop of the coordination
algorithm (Figure 3), the protocol determines what to com-
municate and how to process communication. A protocol is
defined by how it implements the following procedures to be
called during step 4 of the SHAC coordination algorithm for
the shared activity to which it is assigned:

1. modify permissions of the sharing agents
2. modify locally generated parameter constraints
3. add/delete agents sharing the activity
4. change roles of sharing agents

The default protocol, representing a base class from which
other protocols inherit, does nothing for these methods. How-
ever, even with this passive protocol, the SHAC algorithm
still provides several capabilities:

joint intention A shared activity by itself represents a joint
intention among the agents that share it.

mutual belief Parameters or state assertions of shared activ-
ities can be updated by sharing agents to establish con-
sensus over shared information.



Given: a ������� with multiple activities including a set of ��1��	�

� �,�2�&# . #%�&#&

� with �����'�$�&�
�	#%���)� and a ���
��3	
��2�&#&��� of���+�	� into the future.

1. Revise ������3	
��2�&#&��� using the currently perceived state and any newly added goal activities.
2. Alter ���+�	� and ���
��3	
��2�&#&��� while honoring �4���'�4�&�
�	#%���)� .
3. Release relevant near-term activities of ���+�	� to the real-time execution system.
4. For each shared activity in ��1��	�

� �,�2�&# . #%�&#%

� ,� if outside consensus window,

– apply each associated protocol to modify the shared activity;� else
– apply simple consensus protocol.

5. Communicate changes in ��1��	��
� �,�2�&# . #%�&#&

� .
6. Update ��1����

� �	���&# . #%�&#&
�� based on received communications.
7. Go to 1.

Figure 3: Shared activity coordination algorithm

resource sharing Sharing agents can have identical con-
straints on shared states or resources.

active/passive roles Some sharing agents can have active
roles with execution primitives while others have pas-
sive roles without execution primitives.

master/slave roles A master agent can have permission to
schedule/modify an activity that a slave (which has no
permissions) must plan around.

The following sections describe some subclasses of this ab-
stract protocol, demonstrating capabilities that each protocol
method can provide.

4.1 Argumentation
Argumentation is a technique for negotiating joint beliefs or
intentions [Kraus et al., 1998]. Commonly, one agent makes a
proposal to others with justifications. The others evaluate the
argument and either accept it or counter-propose with added
justifications. This technique has been applied to teamwork
negotiation to form teams, reorganize teams, and resolve con-
flicts over members’ beliefs [Tambe and Jung, 1999]. It can
also be used to establish consensus on shared activities.

A shared activity and associated parameter values are the
proposal or counterproposal. Justifications are given as pa-
rameter constraints. A proposal is a change to a shared activ-
ity that does not violate any parameter constraints. A coun-
terproposal may violate constraints. Protocol method 2 must
be implemented to provide the parameter constraint justifica-
tions for proposals and counter-proposals. In order to avoid
race conditions, protocol method 1 regulates permissions.

Argumentation method 1� if this agent sent the most recent proposal/counterproposal
– if planner modified shared activity5 remove self’s modification permissions� else
– give self modification permissions (e.g. move and

delete)

Argumentation method 2� if planner modified shared activity

– generate parameter constraints describing locally
consistent values

For example, one agent can propose an activity with a par-
ticular start time and add justifications in the form of all in-
tervals within which the shared activity can be locally sched-
uled. Other agents can replan to accommodate the proposal
and counter-propose with their own interval restrictions if
replanning cannot accommodate others’ constraints. If the
agents cannot establish consensus before the consensus win-
dow, a higher ranking agent can mandate a time that ben-
efits most of the agents. Of course, there are many varia-
tions on this example. Agents may be restricted because they
are slaves or do not have constraint permissions to counter-
propose.

4.2 Delegation
Delegation is a mechanism where an agent in a passive dele-
gator role assigns and reassigns activities to different subsets
of agents in active subordinate roles. The delegator and sub-
ordinate protocols only need to implement protocol method 3
to choose the subordinates sharing the activity.

Delegator method 3� if ����
����6���
��

� empty
– choose an ���,
���� to whom to delegate the activity
– add ( ���,
���� , subordinate) to ����
��������
��

�

Subordinate method 3� if cannot resolve conflicts/threats involving activity
– remove self from ����
������
�
�+

�

5 Defining Consensus Windows
Here we describe an algorithm for determining the shortest
consensus window given a consensus protocol under partic-
ular communication constraints. Suppose agents have prede-
termined communication opportunity windows, such as or-
biters having regular patterns of visibility to each other, a
planetary surface, or Earth. We assume that communication
is reliable with delivery time guarantees, that bandwidth is
sufficient for coordination protocol communications, and that
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Figure 5: State-time diagrams of agent communication. a) no communication constraints; b) communication restricted to
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Figure 4: Information flow for consensus protocols: a) high-
est rank decides and b) voting or auction

the planner has worked out contention for power and memory
resources required for communication.

Consensus protocols can be classified according to the flow
of data and the computation time required to respond. Figure
4 shows examples for highest-rank-wins, voting, and auction
protocols.2 The voting protocol requires each participating
agent to send a vote to a central agent, who (once all votes
are received) can instantaneously determine the outcome that
it must send to all participating agents. The space-time dia-
gram in Figure 5a shows how voting reaches consensus for a
decision when triggered upon entering the consensus window.
However, this diagram assumes that agents can communicate
at any time. Figure 5b shows the same protocol when pairs
of agents can only communicate during specified periods (in-
dicated by shaded regions). By walking through this diagram
from left to right, the steps of the information flow diagram
of Figure 4 are realized. In order to minimize the time to
consensus, Agent C sends its vote/bid to B through A, and B
sends the vote/auction outcome to A through C.

In order to determine how long the consensus window
should be, we expand backwards through the state-time di-
agram according to the information flow diagram. To do this,
we first construct a directed graph ( 708 ) as shown in Figure 5c
from the execution time backwards, where each node is la-
beled by an estimated time value and an agent identifier. We
also construct another directed graph ( 7:9 ) for the protocol’s
information flow, labeling edges according the state ordering
(as done in Figure 4). Using these two graphs, the following
algorithm determines the time to begin the consensus win-
dow by expanding a frontier of vertices backwards for each
step (state) of the information flow diagram.

2We assume that the decision being voted or auctioned is priorly
known by the agents.

Function Determine start time of consensus window
Input directed acyclic graph of communication opportunities;=<$>+?	<�@�AB<DC

, information flow diagram
;FE�>+?,E%@�AGE+C

Output HJILKNM
O$H=P-Q%R"S4QT HGILKNM
O4HUP-Q%R"S�Q = execution time (i.e. max V�W
X�Y ( Z,[ Q%IL\^] )))T`_ Q%R
Q&] = max a W�b,c ( ]�[ _ Q%R
Q&] )T repeat
– d,efO$H = g4]ih A E�j ]
[ _ Q%R
Q%]=k _ Q%R
Q&]$l
– _2m KNnpo�qGIL\!] = HGILKNM
O$H=P-Q%R"S�Q
– for each ] E hrd,efO4Hs d	S4O$K�Q%I+]2S = g�Zth ?	< j Z,[ R
u�]2K�Q'k`] E [ M"] _ Q�vZ,[ Q%IL\^]Gk _pm KNnwo�qJI+\!]$ls repeatx A = g4]Fh ?	< j ]�[ M"] _ Qyhzd	S4O4KNQ(I+]�S{v]
[ _ O4|,S$nw]t}h^d	S4O$K�Q%I+]2S�lx ] < = argmin a W�b ( ]
[ _ O4|,S$nw]�[ Q(IL\^] )x d	S$O4K�Q%I+]2S = d	S4O4KNQ(I+]�S + g4] < [ _ O4|,S4np]$ls until ] < [ _ O$|	S$nw]
[ R
u�]2K�Q = ] E [ M"] _ Qs HJI+KNM
O4HUP-Q(R�S�Q = min( HJILKNM
O$H=P-Q%R"S4Q , ] < [ _ O$|	S$nw]
[ Q(I+\!] )
– _ Q(R
Q&] = _ Q%R
Q%] - 1T until _ Q(R
Q&] = 0T return HGILKNM
O$H=P-Q%R"S�Q

The algorithm begins by setting ~i#%�� ���~������	��� to the time
of execution. It works backwards through the states of the
information flow diagram, so �$���	��
 is initially set to 2 for the
voting protocol. The �6�+��~ set contains all of the edges in
the flow diagram labeled 2. �$�,���41N��#(��
 is the time point
between states and is used to populate �-�������&#&
�� with a ver-
tice for each destination agent (agents A and C for the vot-
ing protocol) in the communication opportunity graph ( 7!8 )
at �$�	���$1N�i#%��
 . After working back to state 1, �-�
�����&#%
�� only
contains the vertice for Agent B just after the time that all
votes are collected. The �-�
�����&#%
�� is greedily expanded back-
wards in the fashion of a tree spanning algorithm, iteratively
adding vertices at time points closest to the frontier. Once
the source agent of the information flow edge is reached,~i#%�� 	��~������	��� records that latest time the source agent can
send out information. This is done for each edge of the �6�+��~
for the same state since it can take longer for information to
travel from different agents. Once all edges of one state are
simulated, ~�#(�� 	��~������	��� contains the minimum time, repre-
senting the synchronization point ( �4�,���41��i#%��
 ) for the prior
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state to be simulated. Figure 5c shows thicker edges used
to expand the frontiers of each state to find the latest possi-
ble consensus window start for the voting protocol. This is
the actual flow of information for reaching consensus. Notice
that the optimal start time is later than the example in Figure
5b.

The algorithm assumes that communication constraints
are windows of communication and bounded delays on data
transfer. The algorithm also assumes a simplified version of
the information flow diagram that models the protocols. A
possible expansion could include probabilistic information
for unreliable transfer of data, and the algorithm could be
adapted to give consensus windows with a probability of
reaching consenus. Communications costs could also be
included so that the algorithm could return optional con-
sensus windows with different overall costs. While parallel
information flow is modeled, the algorithm does not handle
multiple hops within a single state. While somewhat limited,
this approach can serve as a starting point for incorporating
these extended capabilities.

6 Application to Mars Scenario
Now we describe how SHAC is applied to a simulated
three-day scenario involving two Mars Exploration Rovers
(MERs), the Mars Odyssey orbiter, Mars Global Surveyor,
and the Mars Express orbiter. The delegation protocol
described previously was subclassed for the rovers to assign
and reassign the routing of images to the orbiters based on
how quickly they can deliver the data to Earth. Different
master/slave and active/passive roles are defined using
permission constraints for the shared activities to implement
a basic protocol for coordinating communication to and from
Earth. Interactions over communication (once delegated) are
between two agents, so the consensus window is defined to
cover communication activities spanning two communication

opportunities into the future. Once in the consensus window,
the rover cannot redelegate activities unless the orbiter
cannot resolve conflicts and must decommit. We intend
to experiment with other protocols and consensus window
definitions in this domain in our future work.

The MERs (MER A and MER B) and the orbiters can com-
municate with Earth directly, but the MERs can optionally
route data through the orbiters, which talk with Earth at a
higher bandwidth. The rovers need daily communication with
ground operations to receive new goals. The rovers will often
fail to traverse to a new target location and cannot proceed
until new instructions come from ground operations. In this
scenario both MERs must negotiate with the assigned orbiter
to determine how to most quickly get a response from Earth
after sending an image of their surroundings.

Each MER has a communication state shared with each or-
biter that tracks when the image is generated, when it gets
to Earth, and when the response from ground operations ar-
rives to the rover. Shared activities for changing the state are
shown for different routing options in Figure 6. The rover’s
activity for generating an image from its panoramic camera
changes the state to request to communicate its need to
downlink and receive an uplink. Activities for sending the
image to Earth (either directly or through Odyssey) change
the state to wait for uplink to indicate that the rover
will then be waiting for the uplink. Ground operations needs
a period of time to generate new commands for the uplink,
so if the uplink is received by Odyssey, the state changes to
received to indicate that now the rover can get the uplink
from Odyssey. Once the rover receives the uplink, the state
changes back to the normal no pending request state.
Rover tasks (such as a traverse) need the uplinked data be-
fore executing, so it places a local constraint that shared state
be no pending request during its scheduled interval.
There are no shared resources although communication re-
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Figure 7: Downlink/uplink shared state for MER A. From top to bottom, Odyssey’s initial view, MER A’s initial view, and the
common view after coordination.

quests from a MER have effects on many local resources of
both the MER and the orbiter. All of the shared activities have
active master and passive slave roles. The MERs and obiters
both take the master role for activities labeled for them in
Figure 6.

CASPER planners for each of the MERs and orbiters first
build their three-day plans separately to optimize the timely
delivery of priority weighted science data, resolving any lo-
cal constraints on memory, power, battery energy, etc. The
three-day schedules constitute over 900 tasks for each MER
and over 1300 for each of the orbiters with 30 state/resource
variables for each MER and 22 for the orbiters. Planning is
slowed by a factor of 440 to account for differences between
a desktop workstation and a radiation-hardened flight proces-
sor. Communication for coordination is restricted to times
when the orbiters pass overhead. With the exception of Mars
Express, the orbiters pass overhead once every eight hours.
Because of its irregular orbit, Mars Express sees the rovers
only once every 96 hours. Because of this, we actually used
no consensus window for communication with Mars Express,
thus, forcing the planners to resolve conflicts during image
transmission.

When coordination begins, the planners send their commu-
nication requests to the other planners while optimizing their
plans. Before these updates are received, the initial views of
the shared uplink status are shown in Figure 7. The MERs be-
gin with conflicts with their traverse tasks because the uplink
has not yet been received from Earth. The coordination algo-
rithm commands the planners to repetitively process shared
task updates, replan to resolve conflicts by recomputing the
shared state and modifying scientific measurement operations
to adjust for the increased power and memory needs, and send

task updates. After a minute and a half, MER A, B, and
Odyssey agree on routing the downlink and uplink through
Odyssey to get the uplinked commands in time for the traver-
sal on different days. he resulting shared state is shown at the
bottom of Figure 7. The planners reach consensus that coor-
dination is complete and sleep while waiting for task updates.

Among other failed communication attempts, we triggered
an anomaly in MER A’s plan causing it to cancel its first day’s
tasks and shift the entire schedule forward a day. Before send-
ing the updated shared tasks, replanning was issued to resolve
local constraints to avoid propagating inconsistent state infor-
mation to Odyssey. All conflicts were resolved in a few sec-
onds except the traverse conflicts with a wait state. Then
MER A sends a task update to restart coordination. Coordi-
nation completes in less than a minute with data again being
routed through Odyssey.

While we have only experimented with simple protocols,
this application of SHAC to the Mars scenario shows how
planners can coordinate during execution while making min-
imal concessions to ideal plans and responding to unexpected
events. In the next section, we discuss how SHAC builds on
related work and discuss new research challenges for decen-
tralized, coordinated planning.

7 Discussion and Related Work
Conflicts among a group of agents can be avoided by reduc-
ing or eliminating interactions by localizing plan effects to
particular agents [Lansky, 1990], and by merging the indi-
vidual plans of agents by introducing synchronization actions
[Georgeff, 1983]. In fact, planning and merging can be inter-
leaved [Ephrati and Rosenschein, 1994]. Earlier work stud-
ied interleaved planning and merging and decomposition in



a distributed version of the NOAH planner [Corkill, 1979]
that focused on distributed problem solving. More recent re-
search builds on these techniques by formalizing and reason-
ing about the plans of multiple agents at multiple levels of ab-
straction to localize interactions and prune unfruitful spaces
during the search for coordinated global plans [Clement and
Durfee, 2000].

DSIPE [desJardins and Wolverton, 1999] employs a cen-
tralized plan merging strategy for distributed planners for
collaborative problem solving using human decision support.
Like our approach, local and global views of planning prob-
lem help the planners coordinate the elaboration and repair of
their plans. DSIPE provides insight into human involvement
in the planning process as well as automatic information fil-
tering for isolating necessary information to share. While our
approach relies on the domain modeler to specify up front
what information will be shared, SHAC supports a fully de-
centralized framework and focuses on interleaved coordina-
tion and execution.

In many ways this work is following the Generalized Par-
tial Global Planning approach to using a mix of coordination
protocols tailored for the domain [Decker, 1995]. SHAC of-
fers an alternative framework for separating implementation
of these mechanisms from the planning algorithms employed
by specific agents. Unlike GPGP, SHAC provides a modular
framework for combining lower-level mechanisms to create
higher-level roles and protocols. Our future work will build
on GPGP’s evaluations of mechanism variations to better un-
derstand how agents should coordinate for domains varying
in agent interaction, communication constraints, and compu-
tation limitations.

Finally, TEAMCORE provides a robust framework for de-
veloping and executing team plans [Tambe, 1997; Pynadath
et al., 1999]. This work also offers a decision-theoretic
approach to reducing communication within a collaborative
framework. Research is needed to investigate the integration
of coordinated planning with robust coordinated execution.

An assumption commonly made in multiagent research is
that agents will be able to communicate at all times reliably.
In the Mars scenario, the spacecraft communicate with each
other in varying time windows and frequencies, and the two
MERs can never directly talk to each other. Establishing con-
sensus on beliefs and intentions is impossible without certain
communication guarantees [Mullender, 1995]. Understand-
ing the communication properties that make consensus possi-
ble and the overhead for establishing consensus is critical for
multiagent research.

8 Conclusion
We informally described a continual coordination problem
and its challenges. SHAC addresses the problem as a general
planner-independent continual coordination algorithm and a
framework for designing and evaluating role-based coordina-
tion mechanisms. We described its capabilities and gave ex-
amples of higher-level mechanisms built on these capabilities.
In addition, we have presented an algorithm for determining
the time to reach consensus given a protocol and communica-
tions constraints. While our future work is aimed at evaluat-

ing the benefits of different protocols for different classes of
multiagent domains, we validate our approach in coordinat-
ing five simulated spacecraft experiencing unexpected events.
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