
Hybrid STAN: Identifying and Managing Combinatorial

Optimisation Sub-problems in Planning

Maria Fox

University of Durham, UK

maria.fox@dur.ac.uk

Derek Long

University of Durham, UK

D.P.Long@dur.ac.uk

November 13, 2000

Abstract

It is well-known that planning is a hard combinatorial problem but it is less well-known how

to approach the hard parts of a problem instance e�ectively. Generic search is not always the

most appropriate problem-solving tool, but planners do not generally have a wide repertoire of

alternative strategies to apply to combinatorial sub-problems within planning domains. Some

such (NP-hard) sub-problems occur very commonly { for example, Travelling Salesman-like

sub-problems arise when a planning problem involves accomplishing tasks at di�erent locations

in contexts where the ordering in which these locations are visited a�ects the eÆciency of the

plan. Multiprocessor Scheduling-like problems occur when there are limited resources and tasks

requiring the use of these resources. Again, the way in which restricted resources are allocated

between processors can a�ect plan quality.

Using static domain analysis techniques we have been able to identify certain combinatorial

sub-problems, within planning problems, making it possible to abstract these sub-problems

from the overall goals of the planner and deploy specialised technology to handle them in a way

integrated with the broader planning activities. We have experimented with the development of

a hybrid planning system which brings together a range of planning strategies and specialised

algorithms and selects between them according to the underlying properties of the planning

domain. The hybrid planner constitutes version 4 of STAN, and it participated successfully in

the AIPS-2000 planning competition. We describe how sub-problem abstraction is done, with

particular reference to route-planning abstraction, and present some of the competition data to

demonstrate the potential power of the hybrid approach.

1 Introduction

The knowledge-sparse, or domain-independent, planning community is often criticised for its obses-

sion with toy problems and the inability of its technology to scale to address realistic problems [17].

Weak heuristics, which attempt to guide search using general principles and without recourse to

domain knowledge, are not powerful enough to enable knowledge-sparse planning to compete, in a

given domain, against a planner tailored to perform well in that domain.

On the other hand, tailoring a planner to a particular domain, or making explicit expert knowl-

edge that a planner might be able to exploit to avoid parts of the search space, requires considerable

e�ort on the part of a domain expert. This e�ort is, in the main, not reusable because a di�erent

domain requires a whole new body of expertise to be captured and it is not clear what (if any)

general principles can be extracted from any single such e�ort to facilitate the next. For plan-

ning technology to be attractive to a user there need to be ways of short-circuiting the domain

description process so that the domain designer is not required to specify what can be inferred

from information already provided. The philosophy underlying our work on domain analysis is

that knowledge-sparse planning can only be proposed as realistic general planning technology if it

is supplemented by sophisticated domain analyses capable both of assisting a user in the develop-

ment of correct domain descriptions and of identifying structure in a planning domain that can be

e�ectively exploited to combat search.

In this paper we describe a way of decomposing planning problems to identify instances of

NP-hard sub-problems, such as Travelling Salesman, that are not best tackled by a general search

strategy but are most e�ectively solved by purpose-built technology. Knowledge-sparse, general,

planning is rather a blunt instrument for problem-solving because it uses the same methods to

solve all problems, whether they genuinely require planning or are in fact instances of well-known

problems that are themselves the topic of substantive research. A more powerful approach is to

allow such sub-problems to be abstracted out of the planning problem and solved using specialised

technology. The challenge then is to integrate the di�erent problem-solving strategies so that they

can cooperate in the solution of the original problem.

We have been experimenting with using the automatic domain analysis techniques of TIM[6]

to recognise and isolate certain combinatorial sub-problems and to propose a way in which their

solution, by specialised algorithms, might be integrated with a knowledge-sparse planner.

The work described in this paper has been successfully implemented in version 4 of the STAN

system (STAN4) and has proved very promising. STAN4 competed in the AIPS-2000 planning com-

petition where it excelled in problems involving route-planning sub-problems and certain resource

allocation problems involving a restricted form of resource. The data sets from the competition are

discussed in Section 5. In STAN4, our automatic domain-analysis system, TIM, selects between a

forward and backward planning strategy depending on characteristic features of the domain. The

forward planning component, FORPLAN, is integrated with simpli�ed specialist solvers for certain

simple route-planning and resource allocation sub-problems. In Section 3 we describe the compo-

nents of the hybrid architecture of STAN4 and explain the integration of these components. Full

details of the abstraction process, its integration with planning and its limitations, can be found

in [8].

2 Recognising Generic Behaviours

In our paper [12] we describe the process by which our automatic domain analysis tool, TIM [6],

can identify a collection of generic types within a domain. Generic types are collections of types,

characterised by speci�c kinds of behaviours, examples of which appear in many di�erent planning

domains. For example, domains often feature transportation behaviours since they often involve

the movement of self-propelled or portable objects between locations. In the context of recognising

transportation domains TIM can identify mobile objects, even when they occur implicitly, the

operations by which they move and the maps of connected locations on which they move, the

drivers (if appropriate) on which their mobility depends, any objects they can carry, together

with their associated loading and unloading operations. The analysis automatically determines

whether the maps on which the mobiles move are static (for example, road networks) or dynamic

(for example, corridors with lockable doors). The recognition of transportation features within a

domain suggests the likelihood of route-planning sub-problems arising in planning problems within

the domain.

Work is in progress, with promising initial results, allowing the recognition of certain kinds of

resources which restrict the use of particular actions in a domain. The presence of these features

suggest that processor and resource allocation sub-problems might arise and might be related to

combinatorial sub-problems such as Multi-processor Scheduling or Bin Packing. TIM is able to

recognise the existence, in a domain, of �nite renewable resources which can be consumed and

released in units. STAN4 exploited this to interesting e�ect in the Freecell domain in the AIPS-

2000 competition (see Figure 6) but we have been unable, so far, to exploit the presence of such

resources in a robust way. This paper does not, therefore, give details of our handling of these

reources.

We are also working on the recognition of generic types indicative of other fundamental be-

haviours. For example, we have identi�ed construction and
ow as examples of generic behaviours

associated with their own generic types and sub-problems. Construction problems are commonly

associated with iterative behaviour, suggesting the presence in the domain of types with inductive

structure (analogous to lists and trees) associated with well-de�ned inductive operations. Recog-

nition of these features supports an abstract level of reasoning about the domain.

The analysis performed by TIM takes as input a standard STRIPS or ADL description of a

domain and problem. No annotations are required to identify special behaviours and the analysis

is entirely independent of the syntax used to describe the objects and operations. In addition, the

analysis can identify generic behaviours in objects which do not obviously fall into the categories

suggested by the names of the generic types. This allows the exploitation of specialist problem-

solving technology in situations in which a human expert might not even recognise the presence of

the appropriate generic type structure.

We have so far experimented most successfully with the recognition and abstraction of route-

planning sub-problems. Integration of specialised route-planning technology with the search strat-

egy of a planner is easiest to achieve in a heuristic forward-search-based planner, so we have

implemented a forward planner, FORPLAN, using a simple best-�rst search strategy. FORPLAN

uses a heuristic evaluation function, based on solving the relaxed planning problem, similar to the

approach taken by HSP [3] and Ho�mann's FF [9]. Like FF, FORPLAN uses a relaxed version

of GraphPlan [1] to compute the relaxed plan estimate. The di�erence between FORPLAN and

FF is that the relaxed plan is constructed for the abstracted planning problem - that is, the part

of the planning problem that remains when operators and preconditions relating to the identi�ed

sub-problem have been removed. This gives us only part of the heuristic estimate. As is described

in the following sections, the heuristic estimate is then improved using the calculations performed

to estimate the cost of solving the removed sub-problem. This two-part process can result in much

better estimates than those produced by FF. FORPLAN has no e�ective heuristic control, except

when path-planning or resource allocation sub-problems can be abstracted, so that it is almost

useless as a general planner.

3 The Hybrid Planner Architecture

Because FORPLAN is not e�ective as a general planner we cannot rely on it for solving problems

that do not have the sub-problem characteristics described above. We therefore constructed a

hybrid system for entry into the AIPS-2000 competition. Our intention, in the competition, was to

show that certain combinatorial sub-problems can be abstracted out of the planning process and

to demonstrate a means of achieving this abstraction. In order to be able to compete realistically

we needed to be able to report results for problems that did not have these features. We therefore

added STAN [11] version 3 as an alternative planning strategy, yielding a hybrid of two planning

TIM

STAN3

STAN4

Path-planning
 orOther domain

characteristics Resource
management

FORPLAN

Path-planner

Resource Manager

Figure 1: The architecture of the hybrid system showing how TIM selects between FORPLAN and

STAN depending on the outcome of domain analysis.

strategies and two specialist solvers (one for solving route-planning sub-problems and one for solving

resource-allocation sub-problems). TIM operates as an interface to the hybrid, selecting between

components of the hybrid according to the structure of the domain. A high-level view of the

architecture of STAN4 is presented in Figure 1.

We now describe the processes by which route-planning sub-problems, once identi�ed by analysis

of a domain description, are abstracted and their solution, by specialised algorithms, integrated

with the FORPLAN planning process.

STAN4 relies upon TIM for selection between the two available planning strategies. TIM �rst

analyses the domain and problem instance. The objective of the analysis is to identify whether

mobile objects exist, and if so whether a decomposable transportation problem can be found. TIM

identi�es the mobile objects and the locatedness predicate (also referred to as the atrel) they use (for

example: at). The locatedness predicate is important for identifying actions which rely on changes

in the locations of mobile objects. TIM then invokes FORPLAN or STAN3. FORPLAN is invoked

if the domain is identi�ed as having route-planning or resource-allocation sub-problems. STAN3 is

invoked in all other domains. There are some positive reasons for invoking STAN3, but these have

not yet been fully developed. For example, TIM attempts to identify whether the relaxed plan

estimate is likely to be a good estimate of the distance between states, by measuring the extent to

which actions impact on states. If a domain contains high impact actions then the relaxed plan

estimates are likely to be poor. Our attempts to measure impact are currently too coarse to be

robust, but we believe this is an important indicator of the suitability of forward search.

The presence of STAN3 means that TIM fails safe when it fails to identify a key sub-problem.

At the moment this happens quite often because we are working with some simplifying assumptions

about the structure of locatedness conditions and maps, but we are gradually increasing the range

of recognizable route-planning sub-problems.

If FORPLAN is invoked the domain must be modi�ed, to abstract out the route-planning (or

resource-allocation) sub-problem, before planning begins. A high level description of the algorithm

is given in Figure 3.

We intended STAN4 to demonstrate that a hybrid planning system, in which alternative plan-

ning strategies are chosen automatically, depending on properties of the problem domain, is feasible.

Our specialised algorithms for handling the abstracted sub-problems in STAN4 demonstrate that

special-purpose approaches can be integrated successfully into the architecture of a planner. We

make no great claims for the speci�c algorithms we used. For example, as described below, we

use a simple nearest-neighbour heuristic to estimate the cost of solving a given Travelling Sales-

man instance when route-planning is abstracted. This results in poor estimates in some domains,

for example when there are additional constraints present on the order in which locations can be

visited (we discuss this issue in Section 5, with reference to the MICONIC elevator domain). The

nearest-neighbour heuristic was a �rst approximation towards a way of estimating the incurred

costs - we intend to replace this heuristic with a more appropriate cost measure and are currently

investigating alternatives.

Although the GraphPlan-based strategy of STAN3 is now somewhat dated, its inclusion means

that STAN4 can solve (at least some instances of) problems that cannot be e�ectively tackled by

FORPLAN. STAN3 has a number of useful features, including symmetry handling [7] and other

search control mechanisms, which can still give it the advantage in problems that we cannot yet

decompose. It also allows STAN4 to tackle instances of problems involving irreversible actions.

Because FORPLAN does not backtrack over its choices it cannot reliably handle such domains.

Despite the valuable role played by STAN3 in the current hybrid it is invoked for largely

negative reasons. We will, in the longer term, be interested in combining planning strategies

for which stronger positive arguments can be made. It is important to emphasise that we see

the hybrid architecture as combining not just alternative planning strategies but collections of

problem-solving strategies and specialised sub-solvers. There are a number of planners that combine

alternative search strategies which are selected after the preferred strategy has been tried (for some

predetermined period of time) and has failed (eg: BLACKBOX, FF, MIPS). Such systems are often

referred to as hybrid, but the approach taken in these systems is di�erent from the approach taken

in STAN4. In STAN4 a particular planning or problem-solving strategy is not selected because

of the failure of a preferred strategy but because of the suitability of the selected strategy to the

perceived structure of the problem domain. The role of the domain analysis machinery of TIM in

selecting between strategies is the key to the success of our hybrid planning approach.

The data presented in Section 5 shows the performance obtained in the AIPS-2000 planning

competition on domains involving route-planning and resource-handling sub-problems. These do-

mains were: Logistics and the STRIPS version of the elevator domain (route-planning) and Freecell

(resource-allocation).

4 Sub-problem abstraction

In order to show how sub-problem abstraction is achieved in STAN4 we now describe in detail the

process by which route-planning sub-problems are abstracted. Our handling of resource allocation

sub-problems is described in [13].

Having found that there are mobile objects in the domain TIM determines whether the problem

of planning their movement between locations can be safely delegated to a sub-system. The issue

is whether the shortest distance to be travelled by an object moving from one location to another

can be ascertained by looking at the map that the object moves on. If it can, then path-planning

for that object can be devolved to a shortest path algorithm. If not (if the object can temporarily

vacate the map) then a shortest path algorithm cannot be guaranteed to �nd the best path between

two points. The object may be able to reappear on its map at a location di�erent from the one it

left, and this
ying behaviour might give access to shorter paths than are visible on the map alone.

If the object must always re-enter the map at the same location as the one it left then the shortest

(:action collect-order
:parameters (?p ?l ?o)

:precondition

(serving ?p ?o)))
:effect (and (not (waiting ?o ?l))

(waiting ?o ?l))
(and (at ?p ?l) (prepared ?o)

records current
location of ?p.

Mobile object ?p:

Original action schema Modified action schema

Link to mobile
tracker attached
to action.

(:action collect-order
:parameters (?p ?l ?o)

:precondition

(serving ?p ?o)))
:effect (and (not (waiting ?o ?l))

(waiting ?o ?l))
(and (prepared ?o)

Destination
obligation: ?l

Figure 2: An operator schema being modi�ed to remove preconditions concerning the mobile locat-

edness predicate and replace them with a specialised representation storing the required location

of the mobile. The rectangular box on the bottom is a mobile tag.

path between two points is guaranteed to be visible on the map so this restricted form of
ying,

which we call hovering, does not present a problem for route-planning abstraction.

We have experimented with a number of domains in which mobile objects having this hovering

property arise. It sounds like a rather esoteric property, but it actually arises naturally. For example

- in a simple lamp-post maintenance domain maintenance engineers move on a map de�ned by the

locations of the lamp-posts, but they temporarily leave the map when engaged in a maintenance

task (during these periods they \hover" above the map in raised maintenance vehicles) and then

return to the same map location on completion of the task. In these domains abstraction of the

route-planning sub-problem causes no diÆculties because there is no shorter way to get between

lamp-posts than to traverse the map. On the other hand, when
ying is detected we do not attempt

to abstract the problem of route-planning because it interacts in too complex a way with the rest

of the planning problem.

4.1 Technical details

To achieve the abstraction of route-planning, once TIM has identi�ed an appropriate mobile type,

STAN4 associates with each mobile object a data structure which records the current location of

the object. It also identi�es each operator, other than the move operation of the mobile itself, the

preconditions of which require a mobile of this type to be located at a particular location in order

for the action to be executed. Once found, these preconditions are removed from the operators in

which they appear, but each operator is then equipped with an additional data value identifying

where the mobile must be in order to satisfy the abstracted precondition. In other words, the

precondition is transformed from a standard proposition into a specialised representation with

equivalent meaning, but allowing specialised treatment. This specialised representation (which we

call a mobile-tag) provides the means of communication between the planner and a specialised

sub-solver.

All move operations for the mobiles are then eliminated from the domain altogether. This

results in an abstracted version of the domain containing the components of the original planning

problem that the planner will be required to solve. The problem is solved by the planner in this

Preprocessing:

(1) TIM identi�es the mobile objects, their move operators and their atrels.

(2) STAN4 abstracts the move operators out of the domain.

(3) During instantiation of actions STAN4 abstracts out all the preconditions of other

operators that are atrels.

(4) STAN4 replaces each abstracted precondition with a tag saying where the mobile

must be when this action is executed.

Planning:

(1) FORPLAN estimates the distance from current to goal state using the abstracted

domain.

(2) To arrive at �nal estimate FORPLAN sums abstracted length and TSP route length

obtained using NN heuristic.

(3) When an action (in the abstracted domain) with a tag is selected, Floyd's is used to

compute the shortest path from mobile current location to tag location.

Reporting a plan:

When the plan is output move sequences are generated to traverse the routes recorded

in the plan.

Figure 3: Key steps of the STAN4 algorithm, taken when TIM recognises the domain as having

mobile objects for which route-planning can be abstracted.

abstracted form. The abstracted problem is solved using FORPLAN, using a heuristic estimate of

the value of a state based on the length of the relaxed plan between that state and the goal. The

heuristic estimate is calculated by �rst constructing a relaxed plan with the abstracted operators,

and calculating its length, and then adding to it an estimate for the lengths of the routes that

would have to be traversed by any mobiles it uses. The latter calculation takes into account the

cost of solution of the abstracted part of the problem.

The cost of traversing the routes that a plan entails is too expensive to compute with accuracy.

The relaxed plan will show which locations each mobile is required to visit to satisfy the plan,

with some ordering constraints imposed by the dependencies between the activities the mobile will

be involved in at each location (loading must be carried out before unloading and so on). To

calculate a shortest path that visits all these locations and respects these orderings is a variation

on a Travelling Salesman problem, with multiple travellers and additional constraints. Clearly this

cannot be solved eÆciently in general and, still less, be solved repeatedly in the context of heuristic

search, as part of the heuristic evaluation of a state. Instead, we produce an estimate of the cost

by assuming that each mobile can visit each location in turn from the closest of the locations it

has previously visited in the plan, respecting ordering constraints on the visits. Although this is

an unsophisticated approach to tackling the Travelling Salesman problem, its integration with the

planning process demonstrates the possibility of integrating more specialised technology. Despite

its lack of sophistication it gives a better estimate of the cost of a state than a pure relaxed plan

estimate, since relaxed plan estimates neglect the fact that a mobile cannot be in two places at the

same time (the relaxed plan ignores delete conditions and it is these which express the fact that a

mobile cannot be at two places at once).

Integration between the planner and the route-planner is required again when actions are se-

lected for addition to the plan. Once an action is selected it is checked to determine whether it

contains an abstracted locatedness precondition. If so, a path is proposed to move the mobile from

its current location to the required destination (recorded within the mobile tag associated with

action). We use the shortest path between the current location of the mobile (which is always

known in a forward search) and the required location recorded in the mobile tag. At present this

path is precomputed by tim using Floyd's shortest paths algorithm [5] on the map inferred from

the initial state. This approach works well for static maps, where the shortest paths remain �xed,

and in situations in which the movement consumes no additional resources. If the mobile does use

resources during its movement, it might be that the shortest path is not the best, but instead a

longer path which consumes fewer resources is to be preferred.

If the map is dynamic, additional goals will be introduced if the route requires new conditions

to be satis�ed in order for it to be opened along the way. These situations can be identi�ed

automatically, but it is harder to construct simple solutions to deal with them. An important focus

of our current work is to improve both the sophistication of the cases that the route-planning can

deal with and the integration of the route-planning with the planning to solve other problems.

Finally, it is necessary to integrate the e�orts of the planner and the route-planner to produce

output in the form of a plan sequence. Once a route has been planned between the appropriate

locations, STAN4 generates instantiations of the necessary move operators to produce a plan se-

quence corresponding to standard format for STRIPS plans. Figures 1 and 2 present some of the

preliminary results obtained using domains from the STRIPS subset of the AIPS2000 competition

data set. In this collection of domains, Logistics and the MICONIC-10 lift domain both contain a

path-planning sub-problem which TIM was able to identify and extract. Even using just our simple

path-planning strategy we were able to obtain a signi�cant performance advantage from exploiting

path-planning abstraction.

5 Experimental Results

The data sets presented here were compiled by Fahiem Bacchus during the AIPS-2000 competition,

held in Breckenridge, Colorado, during the �fth International Conference on AI Planning and

Scheduling. In the graphs, the thick line is the line plotting the results of STAN4.Graphs showing

time performance are log-scaled.

The graphs show how STAN4 performed, in comparison with a diverse range of the best-

performing planners in the competition, on problems from the STRIPS data set involving either

route-planning or resource allocation. The planners used for comparison are FF [9], HSP-2 [2],

TALplanner [4], SHOP [15] and, occasionally, GRT [16]. The problems used were Logistics, Freecell

and the STRIPS version of the Miconic-10 elevator domain. The Logistics domain was presented

in two sets of problems. The problems increased in diÆculty and the second set comprised larger

(and hence harder) problems than the �rst.

The competition comprised a fully-automated track and a hand-coded track in which planners

were allowed to use hand-tailored domain knowledge. In the results presented here, STAN4, FF,

GRT and HSP-2 are all fully-automated, whilst TALplanner and SHOP use hand-coded control

knowledge. HSP-2 is a re�nement of HSP, the �rst forward planner to demonstrate the potential of

using a relaxed plan heuristic. HSP (and HSP-2) assume independence of facts in the calculation

of relaxed plan length, sometimes resulting in very pessimistic heuristic estimates.

STAN4 participated in the fully-automated track but could only handle the STRIPS problems.

All planners able to handle the STRIPS version of PDDL [14] competed in the STRIPS problems,

including planners in the hand-coded track. However, despite the advantage of being supplied with

120

140

160

180

200

220

240

260

20 25 30 35 40

S
te

ps

Larger Logistics Problems

STAN
HSP2

FF
TalPlanner

SHOP

0.1

1

10

100

20 25 30 35 40

T
im

e

Logistics Problems

STAN
HSP2

FF
Talplanner

SHOP

Figure 4: Quality of plans for, and time consumed to solve, problems 20-40 in the second Logistics

problem set. The data compares three fully automated planners, STAN4, HSP-2 and FF, with

two hand-tailored planners. STAN4 is producing the best quality plans because of its improved

heuristic estimate.

hand-coded control knowledge, these planners did not consistently out-perform the fully automated

planners. For example, STAN4 and FF were both faster than TALplanner and SHOP on the �rst

Logistics dataset and produced at least as high quality plans (Figure 5).

From Figures 4 and 5 it can be observed that STAN4 took slightly longer than FF on the

Logistics problems, but produced slightly better quality plans. As was emphasised earlier, the

improvement in plan quality derives from the fact that STAN4 uses a more informative heuristic

than FF, to guide its search. STAN4 is using route-abstraction in this domain and achieves, on

average, a ten per-cent improvement in plan quality as a result.

Figure 6 shows how STAN4 performed in the Freecell domain. This domain was introduces

specially for the competition, by Fahiem Bacchus, and is a STRIPS formalisation of a solitaire card

game released under Windows. Freecell has a form of resource-allocation occuring as a sub-problem,

because the free cells are a restricted, renewable and critical resource. In order to estimate how

far a state is from the goal it is necessary to take into account the cost of ensuring that suÆcient

free cells are made available to meet the requirements of the abstracted relaxed plan. Our purpose-

built technology for calculating this cost ensures that the consumption of resources does not exceed

availability of those resources. If the balance between consumption and release deteriorates, so

that there is the threat of over-consumption, then the cost of suÆcient release actions to redress

the balance is added in to the estimate. We have not yet succeeded in obtaining a robust way of

accurately estimating these costs, and the performance of STAN4 is somewhat inconsistent as can

be seen from Figure 6. Despite being fastest in all of the problems that it could solve, STAN4

missed several problems and was unable to solve any of the larger instances. Its plan quality was

generally good, except for some anomalously long plans at the top end of the range that it could

tackle. More work is needed to understand the nature of resource problems and to adequately

estimate the cost of distributing resources eÆciently throughout a plan.

Figure 7 demonstrates the performance of STAN4 in the STRIPS Miconic domain. STAN4 had

a bug when the competition data was compiled, causing it to take a lot of time to solve some of the

problems. This was later �xed so that these problems were brought in line with the rest of the data

set. Again, STAN4 is using route-planning abstraction, but produces slightly poorer quality plans

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30

S
te

ps

Logistics Problems

STAN
HSP2

FF
Talplanner

SHOP

0.01

0.1

1

10

5 10 15 20 25 30

T
im

e

Logistics Problems

STAN
HSP2

FF
Talplanner

SHOP

Figure 5: Quality of plans for, and time consumed to solve, problems 0-30 in the �rst Logistics

problem set. FF and STAN are fastest - TALplanner is slower than the fully automated planners

on this problem set, and immune to variations in the problems. It overtakes the other planners at

around problem 30.

0

20

40

60

80

100

120

140

5 10 15 20 25 30

S
te

ps

Freecell Problems

STAN
FF

HSP2

0.01

0.1

1

10

100

1000

5 10 15 20 25

T
im

e

Freecell Problems

STAN
FF

HSP2

Figure 6: Quality of plans for, and time consumed to solve, Freecell problems. STAN4 is fastest

on all of the problems it could solve and produces the best quality plans whilst its performance is

stable (up to problem 20). STAN4 has abstracted out the handling of the allocation of the free

cells and is using an estimate of the cost of balancing the number of used cells with the number of

required cells to improve the relaxed plan estimate. Our handling of resource-allocation problems

is unsophisticated at the moment, accounting for the variable performance.

0

20

40

60

80

100

120

20 40 60 80 100 120 140

S
te

ps

Elevator Problems

STAN
FF

GRT

0.01

0.1

1

10

100

20 40 60 80 100 120 140

T
im

e

Elevator Problems

STAN
FF

GRT

Figure 7: Quality of plans for, and time consumed to solve, STRIPS elevator problems. STAN4

produces slightly poorer quality plans, in some instances, than FF and GRT, and takes twice as

long as necessary for about half of the problems because of a bug (now �xed). STAN4 is the middle

set of data in the right hand graph - the density of the points makes it hard to distinguish the thick

line! STAN4 is using route-planning abstraction. The failure of STAN4 to excel in this domain is

due to the weakness of the nearest-neighbour heuristic, as described in the text.

at the the top end, than either FF or GRT, because of the coarseness of the nearest-neighbour

heuristic used to solve the Travelling Salesman problem that arises for the elevator. This heuristic

favours visiting all of the pick-up locations before any of the drop-o� locations (the simplest way

of respecting the ordering constraints in the plan). In fact, a subtler approach would be to allow

the drop-o� locations to be inter-mingled with the pick-up ones, provided that a drop-o� location

is only selected next when the necessary people are on board. The nearest-neighbour heuristic

tends to be a problem whenever there are many objects to be transported (and many locations

to be visited), and few carriers, as well as additional constraints (derived from the need to collect

objects before delivering them) as in the elevator domain. The heuristic results in greater accuracy

in Logistics because there are (typically) few packages to be transported by any one carrier. As

explained in Section 3, the nearest-neighbour heuristic was only ever intended to demonstrate that

it is possible to integrate purpose-built machinery into the heuristic estimate, allowing the incurred

cost of solving an abstracted problem to be taken into acount in measuring the goodness of a state.

There are more sophisticated special-purpose algorithms that can be used and we are currently

investigating these.

The data presented here gives a clear indication of the potential value of sub-problem abstraction

within a forward planning framework. Although FORPLAN is far from e�ective as a general

planner, the exploitation of sub-problem abstraction makes a range of hard problems manageable

and the generated solutions eÆcient.

The integration of FORPLAN with the sub-solvers involves constraint satisfaction, and it is

reasonable to ask whether CSP technology might provide a more powerful framework for handling

this reasoning within STAN4. However, CSP technology is generic and the problem of maintaining

a set of consistent constraints is as hard as planning itself. Our strategy is to de�ne sub-problem

speci�c mechanisms for handling the integration of constraints sets with the planning process.

Although our current mechanisms are unsophisticated in certain respects we believe that the use

of inferred domain structure is critical in deploying appropriate constraint-handling technology to

make a planning problem more amenable to eÆcient solution.

6 Further Work

Although the foundations just described have produced promising results the framework we have

used to achieve integration is somewhat unsophisticated and in
exible. The following weaknesses

need to be addressed.

TIM only recognises that route-planning abstraction is possible if all mobiles in the domain

are of an appropriate type to enable abstraction under our current assumptions. STAN4 therefore

abstracts path-planning for all mobiles or none. An important re�nement is to allow path-planning

abstraction to be done for appropriate mobiles and not others.

STAN4 can only integrate with one specialised sub-solver, even when there are two or more

combinatorial sub-problems evident in a domain. For example, if a domain involves route-planning

and resource allocation STAN4 must choose just one of them to abstract. At present STAN4

chooses route-planning abstraction because we have made most progress in solving route-planning

sub-problems e�ectively. An important re�nement is to enable integration with more than one sub-

solver. This will involve �nding a way to communicate constraints between multiple sub-solvers

and the planner.

The sub-solver currently used to solve the Travelling Salesman sub-problem, during the heuristic

estimate stage, is too simplistic and does not exploit state-of-the-art Travelling Salesman technology.

An important re�nement is to enable proper integration between the planner and the best available

technology for solving combinatorial sub-problems where these arise. Some of the best solutions to

Travelling Salesman are local search algorithms [10] which it would be interesting to integrate into

the hybrid system.

7 Conclusions

We have experimented with the design of a hybrid planning system in which the choice of problem-

solving strategy is made automatically following static analysis of the domain. Our current hybrid

system, STAN4, gave a promising performance in the AIPS-2000 competition, but it is currently

restricted in terms of the kind of sub-problem integration that can be supported.

Our primary goal is to improve the integration between FORPLAN and the specialised solvers,

allowing a more sophisticated pro�le of sub-problems to be managed. Our secondary goal is to ex-

plore what advantages might be gained from integrating other planning strategies into the hybrid

and what positive reasons might be arrived at, through domain analysis, for selecting these strate-

gies. The key idea underlying our hybrid approach is that planning is not appropriate technology

for solving all problems, and that resorting to generic search, or thrashing between a number of

timed strategies, is not an e�ective way to address such problems. Instead we are interested in

building up a collection of purpose-built strategies for combatting some of the most commonly

occurring combinatorial optimisation problems and making these available to a planner, together

with techniques for recognising where these problems arise in planning domains. The decision about

how to approach a given planning problem can then be made automatically, in a principled way,

by deciding how to view the problem and deploying the most e�ective technology to solve it.

References

[1] A. Blum and M. Furst. Fast Planning through Plan-graph Analysis. In IJCAI, 1995.

[2] B. Bonet and H. Ge�ner. Planning as heuristic search: new results. In Proceedings of the

European Conference on Planning (ECP), 1997.

[3] B. Bonet, G. Loerincs, and H. Ge�ner. A robust and fast action selection mechanism for

planning. In AAAI, 1997.

[4] P. Doherty and J. Kvarnstrom. Talplanner: An empirical inverstigation of a temporal logic-

based forward chaining planner. In Proceedings of 6th International Workshop on Temporal

Representation and Reasoning, 1999.

[5] R. W. Floyd. Algorithm 97: shortest path. CACM, 5(6), 1962.

[6] M. Fox and D. Long. The automatic inference of state invariants in tim. JAIR, 9, 1998.

[7] M. Fox and D. Long. The detection and exploitation of symmetry in planning problems. In

Proceedings of the International Joint Conference on Arti�cial Intelligence, 1999.

[8] M. Fox and D. Long. The use of static analysis to identify and decouple sub-problems in

planning. Technical report, Department of Computer Science, University of Durham, UK,

2000.

[9] J. Ho�mann. A heuristic for domain-independent planning and its use in an enforced hill-

climbing algorithm. Technical report, Albert-Ludwigs University, Freiburg, Germany, 2000.

[10] D. S. Johnson. Local optimisation and the Travelling Salesman Problem. In Automata,

Languages and Programming: Proceedings of 17th International Colloquium, 1990.

[11] D. Long and M. Fox. The eÆcient implementation of the plan-graph in stan. JAIR, 10, 1999.

[12] D. Long and M. Fox. Automatic synthesis and use of generic types in planning. In International

Conference on AI Planning and Scheduling, 2000.

[13] D. Long, M. Fox, L. Sebastia, and A. Coddington. An examination of resources in planning.

Technical report, Department of Computer Science, University of Durham, UK, 2000.

[14] D. McDermott. PDDL { the planning domain de�nition language. Technical report, Yale

University, http://www.cs.yale.edu/users/mcdermott.html, 1998.

[15] D. Nau, Y. Cao, A. Lotem, and H. Mu~noz-Avila. SHOP: Simple hierarchical orederd planner.

In Proceedings of the International Joint Conference on Arti�cial Intelligence, 1999.

[16] I. Refanidis and I. Vlahavas. GRT: A domain independent heuristic for STRIPS worlds based

on greedy regression tables. In Proceedings of the Fifth European Conference on Planning,

Durham, UK, 1999.

[17] D. Wilkins and M. desJardins. A call for knowledge-based planning. In AIPS workshop on

Analyzing and Exploiting Domain Knowledge for EÆcient Planning, 2000.

