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Abstract 
Effective scheduling of the James Webb Space Telescope 
(JWST) requires managing the trade-off between multiple 
scheduling criteria including minimizing unscheduled 
time, angular momentum build-up, and the number of 
observations that miss their last opportunity to schedule. 
Previous studies examined momentum management and 
wasted space and showed that effective JWST scheduling 
requires modeling momentum as a resource that is three-
dimensional, where activities can either produce or 
consume resources depending on when they are scheduled. 
We enrich the scheduling model by adding the ability to 
schedule JWST at different spacecraft roll angles and show 
that this ability has a strong impact on managing 
momentum. A series of multi-objective evolutionary 
algorithms are developed which incorporate different 
techniques to search the enriched domain. The algorithms 
are empirically evaluated showing that the best solutions 
are generated by the approach that evaluates the least 
number of candidate solutions. 

 Introduction  
Effective scheduling of space based astronomy missions 
requires the ability to make trade-offs between competing 
mission objectives. A typical mission includes many 
objectives such as increasing time on target, minimizing 
use of consumables, minimizing the use of critical 
mechanisms, and preferring the highest priority science 
first. These objectives are often competing in that 
improving one objective means making another worse. 
The objectives also have different constituents lobbying 
for them. For example, the mission science community 
may have different needs from the engineering 
community. Traditional scheduling optimization 
techniques are generally based on a single objective that 
combines all criteria into a single value, often by 
weighting the values of the individual objectives. 
However, this necessarily loses information about the 
individual components of the objective, and pre-
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determines the tradeoff among them. Multi-objective 
scheduling techniques allow the retention of separate 
objective components and thus for explicit visibility into 
trade-offs. 
  
 

 
 
 
 
Multi-objective scheduling is a good match for the James 
Webb Space Telescope (JWST). In addition to typical 
scheduling objectives such as minimizing schedule gaps 
and minimizing the number of observations that miss their 
last scheduling opportunity, JWST scheduling requires 
the ability to minimize momentum build-up during 
scheduling. JWST requires a sun shield about the size of a 
tennis court to protect its science instruments from 
overheating. Solar radiation pressure on the sunshield 
causes angular momentum to accumulate in the 
spacecraft’s reaction wheel assemblies as measured in 
Newton meter seconds (Nms). The wheels have a limited 
capacity to store momentum, and stored momentum must 
be dumped using spacecraft thrusters. The resulting use of 
non-renewable fuel to fire the thrusters makes momentum 
management a potential limiting factor in the lifetime of 
the mission. As the momentum accumulated by an 
observation varies over time, momentum management is 
expected to be a major constraint driving the efficiency of 
JWST scheduling. The JWST momentum resource 
constraint has several interesting features: 
• the model is intrinsically three dimensional 

Figure 1. James Webb Space Telescope 

107

Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008)



• resource consumption for an observation varies over 
time in non-linear manner 

• resource consumption is vector additive in nature — 
scheduling an observation at a particular time can 
either add to or subtract from the overall 
accumulation 

• momentum provides both a hard constraint due to a 
limited capacity, and a preference to consume as little 
resource as possible. 

These features are different from the types of resources 
covered in the planning and scheduling literature (Laborie 
2003; Policella et al. 2004) where activities consume and 
release a constant capacity. In particular, the non-linearity 
of the domain prevents us from employing techniques 
commonly used to handle resource constraints.  
 Previous studies on JWST scheduling (Rager and 
Giuliano 2006, Giuliano, et al 2007) demonstrated 
effective heuristics for scheduling JWST within a 
simplified spacecraft model. In this paper we enrich the 
scheduling model for JWST by introducing a spacecraft 
roll decision variable and show that controlling spacecraft 
roll is a major factor in limiting momentum build-up. 
Scheduling systems can incorporate multiple decision 
variables in many ways, ranging from optimizing all 
variables at once, to having separate searches for each 
variable. The choice of algorithm impacts the portion of 
the search tree explored and the number of schedule 
candidates evaluated. We examine different techniques 
for incorporating a roll search into a multi-objective 
evolutionary scheduling system, as well as heuristics for 
scheduling. The resulting algorithms are empirically 
evaluated based on experimental runs using a set of JWST 
test observations showing that the technique that 
evaluates the most solutions does not necessarily create 
the best schedules.  

JWST Mission Operations 
The James Webb Space Telescope (JWST) is a large, 
infrared-optimized space telescope, designed to find the 
first galaxies that formed after the Big Bang. Components 
of the mission are under construction and launch is 
planned for 2013. JWST will have infrared sensitive 
detectors and a 6.5-meter primary mirror designed to look 
through dust clouds to see earliest formation of stars and 
planets. The telescope will have a lifetime of 5 to 10 years 
and will be placed in orbit 1.5 million km from Earth. 
 JWST will provide time to general observers through a 
time allocation board. Approved observers will prepare 
their programs using an automated tool. Programs will be 
submitted to the JWST Science Operations Center (SOC) 
and will be scheduled by SOC staff using a two phase 
scheduling process similar to the process used for the 
Hubble Space Telescope (Giuliano 1998). In the first 
phase, a long range plan assigns observations to 
overlapping least commitment plan windows that are 
nominally 60 days long. Plan windows are a subset of an 

observation’s schedulable windows and represent a best 
effort commitment to schedule within the window. In the 
second phase, successive short-term schedules are created 
for 22 day upload periods. The short-term scheduler uses 
plan windows to drive the creation of efficient telescope 
schedules. This two phase process allows a separation of 
concerns in the scheduling process: Plan windows 
globally balance resources, are stable with respect to 
schedule changes, and provide observers with a time 
window so they can plan their data reduction activities. 
Short-term schedules provide efficient fine grained 
schedules to the telescope, handle slews between 
observations, and provide schedules robust to execution 
failure. 

JWST Scheduling Constraints 
A scheduling system for JWST has to satisfy several 
types of constraints on observations. First, an observation 
has to satisfy all requirements defined by the user. These 
include the ability to specify time windows for 
observations, to link observations via precedence or 
grouping relationships with offsets, and to link 
observations via roll constraints.  
 Secondly, an astronomical target can be observed by 
JWST only at certain times of the year determined by the 
location of JWST relative to the sun and the target. We 
call such time intervals visibility windows. The celestial 
position of the target being observed defines the visibility 
windows. Ecliptic poles are visible throughout the year, 
while a target on the ecliptic equator (i.e. on the same 
plane as the Earth’s orbit) has two visibility windows of 
about 49 days each.  
 Thirdly, schedules must satisfy limits on momentum 
accumulation. The current assumption is that stored 
angular momentum will be dumped every 22 days during 
regularly scheduled station-keeping activities. Momentum 
buildup during a 22-day period over a 24 Nms limit will 
require an extra momentum dump. As momentum dumps 
require burning scarce fuel, extra dumps will shorten the 
lifespan of the telescope. It is also preferable to minimize 
the amount of momentum dumped during the regularly 
scheduled dumps. 
 Momentum accumulation can be controlled by 
adjusting the spacecraft roll angle. At any pointing within 
the field of regard, JWST can roll ±5° from the normal 
angle without violating spacecraft constraints. Rolling the 
telescope for an observation impacts the angle that the 
solar pressure asserts on the sunshield, thus affecting the 
momentum buildup for the observation.  

Schedule qualities 
The JWST schedule qualities we desire are the following: 
1. Minimize schedule gaps. The JWST contract 
mandates 97.5% scheduling efficiency. The input set 
(described below) of 1.2 years worth of observations 
provides 20% oversubscription to fill gaps in a one year 
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schedule. We expect this level of oversubscription in 
operations and expect that operations will be able to 
utilize special gap filling observations.  
2. Minimize momentum accumulation. The current 
operational plan is to dump momentum every 22 days 
during station keeping maintenance. The goal for the 
scheduler is to have no or very few 22-day periods that 
require additional momentum dumps. In addition to the 
24 Nms momentum limit, it is preferable to lower the 
amount of momentum dumped during scheduled station 
keeping maintenance as that reduces the amount of non-
renewable fuel to be used. 
3. Minimize dropped observations. The JWST 
scheduling process first assigns plan windows to 
observations during long range planning. Plan windows 
are a subset of an observation’s constraint window and 
are created to balance global resources while informing 
the astronomer when to plan data reduction activities. 
Missing a plan window can disrupt the resource 
balancing, break the handling of linked observations and 
disrupt the plans of the astronomer end user. In the worst 
case, a missed observation cannot be performed later in 
the year and has to either be reworked or scheduled in the 
next year.  

Input Observation Set 
The JWST project has created a Science Operations 
Design Reference Mission (SODRM), which is a set of 
observations that closely match the expected mission 
duration, target distribution, instrument configuration, and 
constraint selection. It contains the specifications for both 
astronomical observations as well as calibration 
observations. The entire SODRM amounts to 
approximately 1.64 years of observations, including time 
for slews and other support activities. To allow us to 
compare with the previous studies we use the same subset 
of the SODRM, totaling 1.2 years worth of observations, 
as input to this study. It consists of 2907 observations, 
including 1822 observations that are linked to at least one 
other observation. Observation duration varies from 70 
minutes to 12 days with a median of 2.08 hours.  
 Scheduling constraints for observations in the SODRM 
were calculated using the JWST Mission Simulator 
(JMS). For each observation, JMS calculates the duration 
(= exposure time + support activity time + slew time), its 
visibility windows, and its momentum profile at every 
3.65 days. JMS also passes user specified scheduling 
constraints such as links between observations to SPIKE. 
 To model momentum at different rolls JMS routines 
were modified to provide momentum data at the normal 
angle, +/-1.5 degrees, and +/- 3.0 degrees from normal. 
Although larger rolls from nominal are legal they were 
not considered as scheduling close to the legal limit could 
create schedules that fail during on-board execution.  
 The momentum routines were run using updated 
spacecraft parameters that reflect best-case momentum 

build-up. As a side effect, the momentum levels in the 
experimental results cannot be directly compared to the 
results presented in the previous studies.  

Verifying Previous Results  
Previous work on JWST scheduling (Giuliano et al. 2007) 
developed a momentum balancing heuristic and showed 
that it was effective in both long range planning and 
short-term scheduling. Using the new roll data we 
performed experiments to revalidate the previous results 
and to determine the potential impact of using roll to 
impact momentum build-up. The experimental setup from 
(Giuliano et al. 2007) was repeated using the new roll 
tables. The new results duplicate the previous experiments 
showing that the heuristic was effective in both long 
range planning and short-term scheduling reducing 
momentum build up by up to 20 percent. 

The Impact of Roll on Momentum Build-up 
Next the short-term scheduling experiments were repeated 
with a roll search being performed after each schedule 
was created. The roll search assigned all scheduled 
observations a random legal roll 100 times and picked the 
schedule with the lowest momentum build-up. The results 
show that even a random roll search has a major impact 
on momentum build-up. Using the momentum heuristic 
reduces build-up by 20%. Using a very simple roll search 
resulted in 80% reduction in total momentum build-up. 
 Based on these results our next set of experiments 
concentrated on strategies for integrating a roll search into 
short-term scheduling. The heuristic LRP generated to 
perform the experiments summarized above was used to 
drive the creation of schedules for three successive 22-day 
resource bins. The experiments explore heuristics and 
alternative methods for incorporating a roll search into an 
evolutionary algorithm based application architecture. 

Evolutionary Algorithms  
A multi-objective optimization problem to minimize M 
objectives subject to K constraints can be stated as 
follows: 
 minimize: 

  

! 

f i (x){ },  i = 1KM  

 subject to: 
  

! 

g j (x){ }
T

" 0,   j = 1KK  

Here 

! 

x  represents a vector in decision space of dimension 
D. A solution is called Pareto optimal when no 
improvement can be made to one objective that does not 
make worse at least one other objective. The set of Pareto 
optimal solutions is called the Pareto frontier. What we 
seek as a solution to the multi-objective optimization 
problem is a good approximation to the Pareto frontier. 
Two important characteristics of a good solution 
technique are convergence to the Pareto frontier, and 
diversity so as to sample the frontier as fully as possible. 
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 We have adopted an evolutionary algorithm approach 
(Deb 2001, Collete and Siarry 2003, Abraham, Jain, and 
Goldberg 2005) to JWST scheduling. Among techniques 
developed to solve multi-objective optimization problems, 
evolutionary algorithms have become popular for a 
variety of reasons. They have been shown effective on a 
wide range of problems and are capable of dealing with 
objectives that are not mathematically well behaved (e.g. 
discontinuous, non-differentiable). By maintaining a 
population of solutions they are capable of representing 
the entire Pareto frontier at any stage. They also lend 
themselves to parallelization, which is an important 
performance consideration for large problems. 
 For this study we have utilized one particular variant 
called Generalized Differential Evolution 3, or GDE3 
(Kukkonen and Lampinen 2005) which has been 
previously used in multi-objective scheduling in a space 
network application (Johnston 2006, 2008). This 
technique is based on Differential Evolution, a single 
objective evolutionary algorithm for real-valued decision 
spaces (Price, Storn, and Lampinen 2005). GDE3 makes 
use of concepts pioneered in the algorithm NSGA II (Deb 
et al. 2002), including:  
• non-dominated sorting of the population into ranks, 

such that members of rank n dominate members of all 
ranks >n, where rank 1 members constitute the non-
dominated set, i.e. the current approximation to the 
Pareto frontier 

• crowding distance is used as a secondary 
discriminator on members of the same rank: members 
in crowded regions of the population are scored 
lower, so the surviving members after selection have 
greater diversity. This helps prevent premature 
convergence of the population to a small portion of 
the Pareto frontier 

• population members are compared with a domination 
or constraint-domination relation — the latter allows 
for domination comparisons even when constraints 
are violated 

 GDE3 operates as follows to evolve the population of 
size N from one generation to the next:  

1. For each parent member of the population 

! 

x
i
, 

select three distinct population members 

! 

x
r
1

, 

! 

x
r
2

, 

! 

x
r
3

, all different and different from the parent  

2. Calculate a trial vector 

! 

yi = xr1 + F " (xr2 + xr3 ) , 
where F is a scaling factor  
3. Modify the trial vector by binary crossover with 
the parent with probability CR. The result is 
compared with the parent: if either the parent or trial 
vector dominates the other, then that vector is 
selected; if neither dominate, then both are selected 
and the population size is reduced via the non-
dominated sorting and crowding distance 
comparisons. 

System Architecture 
The system architecture for the experiments integrates 
existing components (see Figure 2). The Java-based 
GDE3 component is the multi-objective evolutionary 
algorithm driver (Johnston 2006). The Lisp based SPIKE 
system has a model of the JWST scheduling domain. The 
evolver component sends SPIKE decision vectors that are 
used to create schedules and to return objective function 
values. The systems communicate via a socket 
connection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
SPIKE (Johnston and Miller, 1994) is a planning and 
scheduling tool kit that was created for use on the Hubble 
Space Telescope and has been used for multiple orbital 
and ground based astronomical missions including FUSE 
(Calvani 2004), Chandra, Subaru (Sasaki 2000), and 
Spitzer (Kramer 2000). SPIKE has several built-in 
scheduling strategies and provides templates for creating 
new strategies. The system supports iterative repair search 
algorithms. The scheduler first makes an initial guess that 
assigns a start time to all selected observation, possibly 
assigning observations to conflicting times. In the repair 
stage, SPIKE tries to reduce the number of conflicts by 
re-assigning the start time of conflicted observations. At 
the end of the repair stage, SPIKE removes the 
assignments for observations with existing conflicts to 
produce a conflict-free schedule. A simple set of gap 
filling routines were designed for the experiments below. 
 There are several potential strategies that could be 
adopted for integrating these two components. At one 
extreme, the multi-objective solver could incorporate a 
model of the scheduling domain in some detail; at the 
other, all of the detailed scheduling domain knowledge 
would be retained strictly in the SPIKE component. We 
opted for the latter strategy in the work described here: 
this shows the relative ease with which a multi-objective 
solver can be combined with a scheduler that was not 
designed with this in mind, and also prevents the 
duplication of constraint checking and objective 
evaluation algorithms that would otherwise be required. 

Figure 2. System Architecture 
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Evaluating the Evolutionary Algorithm 
Approach 
Experiments were performed to evaluate the evolutionary 
algorithm approach to JWST scheduling. An initial 
implementation utilized two layers of evolutionary search. 
A top-level algorithm repeatedly calls SPIKE to create 
and evaluate schedules. A lower level embedded loop 
searches the roll space for each schedule created. 
 The top-level evolutionary algorithm creates, evaluates 
and evolves population members that are represented as 
decision vectors with values in [0,1]. The vector contains 
a value for each observation in the long range plan for the 
22-day bin. SPIKE uses the vector to drive the creation 
and evaluation of a schedule. The observations 
schedulable in the 22-day bin are sorted by the vector 
value and SPIKE schedules the first 22-days worth of the 
observations on the sorted list. SPIKE then removes 
conflicts and applies gap-filling algorithms that can 
schedule any observation schedulable in the bin. For each 
schedule, SPIKE returns the gap and dropped observation 
metric values. The evolver runs a population of 20 
candidates for 20 generations calling SPIKE 400 times to 
create a schedule. 
 After each schedule is produced by SPIKE a roll search 
is performed that explores the possible roll assignments 
for the observations on the schedule, searching for roll 
angle assignments that minimize the total momentum 
build-up. An evolutionary roll algorithm was compared to 
a search that randomly assigns orientation values. In the 
evolutionary algorithm approach each decision vector 
contains a 0-1 element for each observation that was 

scheduled in the top-level search. SPIKE routines map the 
vector values into legal offsets from nominal and evaluate 
the total momentum usage of the schedule. The 
evolutionary roll search also runs a population of 20 
candidates for 20 generations. After the roll search 
finished, the best momentum value is given to the top-
layer evolver as the momentum metric.  
 In summary, the search is divided into two layers. The 
top layer repeatedly creates and evolves schedules. For 
each schedule created, a second embedded layer searches 
over the possible roll assignments for the observations in 
the schedule. The top-level search creates and evaluates 
400=20x20 schedules. Likewise, the lower level search 
creates and evaluates 400 roll assignments for each of the 
400 schedules. This gives a total of 160,000 schedules 
evaluated.  
 As originally defined, the GDE3 algorithm starts with a 
randomized population, in order to start with a wide range 
of candidates sampling a large portion of objective space. 
This helps ensure that the evolved population generates a 
broad sampling of the Pareto frontier. Since the method is 
elitist, non-dominated solutions will remain in the 
population from one generation to the next. While 
randomness in the initial population does indeed help with 
diversity in the final population, it can lead to 
unnecessarily many solution evaluations. Motivated by 
this, we experimented with biasing or “seeding” the initial 
population with a mixture of heuristic-generated 
solutions. We sought a balance between a randomized 
population, and one with a starter set of candidates that 
help speed the evolution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 

Figure 3a-c. Compares evolutionary versus random search by plotting the Pareto optimal surface 
generated for a 22-day schedule for each pair of metrics. The hollow data points are those in the Pareto 
Optimal surface obtained by combining the schedules from all four scheduling approaches.  
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A simple heuristic was designed that helps to minimize 
the number of dropped observations. By default the 
evolutionary algorithm generates a set of random solution 
vectors for the initial population. The heuristic biases the 
decision vector so that values for “must-go” observations 
were randomly distributed in the range 0-0.5, while values 
for non “must-go” visits were distributed in the range 0.5-
1.0. Using random values in two different ranges allows 
for diversity while ensuring that the underlying 
scheduling algorithm will include the “must-go” 
observations in the schedules created for the initial 
population. 
 The effectiveness of GDE3 search is compared with 
random search algorithms that repeatedly populate 
decision vectors with randomly generated values. Two 
variables are considered in these experiments: 
• Whether or not the top-level search uses a GDE3 

versus random search. 
• Whether or not the embedded roll search uses a 

GDE3 versus random search. 
Varying the two variables gives four combinations, with 
results summarized in Figures 3a-c. 
The experiments were run on three successive 22-day 
schedule bins. As the results were consistent across bins, 
the experimental results from bin3 were selected for 
display. The results for each experimental combination 
are shown in Figures 3a-c. Each subfigure graphs a pair of 
criteria values for solutions on the Pareto frontier. The 
results show that using differential evolution in both the 
top-level and the roll search results in the best schedules. 
Using the evolving search at the top-level and a random 
roll search is the next best and the other two approaches 
result in significantly worse schedules. To further 
quantify the benefits we combined the metric results from 
all four runs and created a combined Pareto-optimal 
frontier (shown as hollow points in Figures 3a-c). We 

then determined which scheduling approach contributed 
most to the combined frontier. Using the evolver in both 
steps produced 56% of the combined frontier. Using the 
evolver just at the top level produced 35% of the 
combined frontier with the two random approaches 
producing 3% and 6% respectively. 
 An additional experiment was performed to further 
verify the effectiveness of the differential evolution 
algorithm over a random search when searching for roll 
assignments. Forty generations of evolutionary roll search 
were run on 200 schedules and the resulting best 
momentum for each schedule was stored. For each of the 
schedules, a random roll search was performed and the 
number of random assignments required to obtain a 
momentum that is as good as the corresponding evolving 
search was determined. Each of the evolving roll searches 
evaluates 40 generations times 20 population size = 800 
roll assignments. The random search times out after 
25,000 random roll assignments. The average number of 
random roll assignments was about 16,000. However, 
approximately half of the random searches time out. So 
the evolving roll search is at least 20 times more effective 
than a random search in terms of the amount of additional 
work required to find as good a solution.  

Alternative Approaches to Integrating Roll 
Search 
The experiments presented above show that an evolving 
roll search is effective at reducing momentum buildup. 
While running the experiments we informally observed 
that evaluating a roll decision vector is about an order of 
magnitude quicker than evaluating a schedule vector. This 
imbalance suggested that we should explore alternatives 
to the embedded roll search approach. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4a-c Compares three alternative approaches to integrating a roll search by plotting the Pareto optimal surface 
generated for a 22-day schedule for each pair of metrics. The hollow data points are those in the Pareto Optimal surface 
obtained by combining the schedules from the three approaches to integrating a roll search. 
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 The nature of the roll objective, determined by a set of 
roll angle control variables that can be applied to any 
existing schedule, suggests that the overall optimization 
problem may be at least in part decomposable with 
respect to task ordering and roll. Reducing the 
dimensionality of the problem objective space can lead to 
major savings in runtime, and so we have conducted 
experiments to explore this. An advantage of pursuing 
this decomposition is that, for a fixed population size, 
filling out a 2D vs. a 3D Pareto frontier will show 
significantly better sampling.  
 Two additional approaches to integrating a roll search 
into the overall search process were considered. In the 
first, we performed a single level evolutionary search that 
attempted to optimize both sets of decision variables at 
once: we call this the “all-at-once” method. The decision 
vector had two entries for each observation schedulable in 
the bin: one entry gave the sort order and the other the roll 
assignment. The second alternative was to delay the roll 
search until after a good set of candidate solutions were 
generated. The evolutionary algorithm was run just 
considering wasted space and minimizing dropped 
observations. After the search completed, a roll search 
was performed on all the population members that were 
active in the last generation of the search. This second 
approach effectively decomposed the problem into (1) a 
two-dimensional multi-objective search, followed by (2) a 
single-objective roll optimization for each of the members 
of the final generation. 
 One way to compare the algorithms is to have each 
approach evaluate the same number of candidate 
solutions. This approach is not used as the time to 
evaluate a schedule is at least an order of magnitude 
larger than the time to evaluate a roll assignment. Instead 
we adjusted the number of generations expanded in the 
different search approaches so that each search had more 
or less the same runtime. The parameters were set as 
shown in Table 1. (all population sizes are set at 20): 
 
 Schedule and Roll Search 

 
Candidates 
Evaluated 

Embedded 20 generations top level * 
20 generations roll search 

160,000 =  
(20*20)*(20*20) 

All-At-Once 150 generations combined 
search 

3000 =  
150 * 20 

Delayed 40 generations schedule + 
100 generations roll  

2,800 = 
40*20 + 100*20 

Table 1: Population members evaluated in different roll 
scheduling approaches 
 
The three alternate approaches were evaluated by running 
them on three successive 22-day schedule bins. As in the 
experiments described above the results are consistent 
across the three bins. Figures 4a-c give the results for 
bin3. The figures plot each pair of schedule metrics 
against each other. In all three plots the delayed roll 
search schedules dominate those from the other 
approaches. As in the previous section we merged the 

Pareto frontiers from the three different approaches and 
created a single combined Pareto frontier (shown as 
hollow points in figures 4a-c). The delayed approach 
contributes 79% to this surface, while the embedded and 
all-at-once approaches contribute 14% and 7%, 
respectively. The delayed approach decomposes the 
problem into separate searches for schedules and roll 
assignment. Decomposing the search allows a deeper 
schedule search than the embedded approach and a more 
focused two-dimension search than the all at once 
approach. Increasing the dimensionality of a search 
generally requires a power of two more generations and a 
corresponding increase in population size in order to get 
results that fairly sample the Pareto frontier. The delayed 
approach allows for a deep roll search over a single 
dimension for the 20 schedules in the final generation. 
The resulting momentum is lower than in the approach 
where a shallow roll search is done for each generated 
schedule.  
 Decomposing the search into separate optimization 
steps is effective as the search spaces do not interact. The 
embedded versus the all-at-once approach results in better 
momentum build-up. However, the all-at-once approach 
is competitive when considering schedule gaps versus 
dropped observations (see Figure 4b). The all-at-once 
schedules fill in and extend the Pareto-frontier developed 
in the delayed roll search approach. Having a deep 150 
generation search is effective when optimizing schedule 
gaps and dropped observations. The fact that the approach 
that generated the least number of candidate schedules has 
the overall best results shows the importance of choosing 
the algorithmic approach which best matches the 
application domain. 

Conclusion 
A JWST scheduling model that adds the ability to alter 
momentum usage based on controlling spacecraft roll was 
presented. The results of previous studies were 
reconfirmed with updated momentum data, and the 
importance of controlling roll to adjust momentum usage 
was demonstrated. Evolutionary algorithms for short-term 
scheduling a subset of the JWST design reference mission 
were presented and shown to be more effective than a 
randomized algorithm at optimizing the three important 
objectives — wasted time, accumulated angular 
momentum, and observations that miss their scheduling 
window. Finally, three alternate approaches to integrating 
a roll assignment search into the scheduling process were 
presented ranging from optimizing the two sets of 
decision variables all at once to decomposing the problem 
into two separate search processes. Experimental results 
were presented showing that for this domain, the best 
approach is to decompose the problem into a schedule 
search (minimizing wasted space and missed 
observations) followed by a roll search (to minimize 
angular momentum buildup).  

113



 The new results show substantially lowered momentum 
usage compared to the previous studies from 2006 and 
2007. This is a result of the best-case spacecraft 
parameters in calculating momentum usage and the ability 
to control momentum usage by adjusting spacecraft roll 
angle. Although the new results show low absolute 
momentum build-up, they should not be taken to indicate 
that momentum scheduling is not a serious scheduling 
concern: for example, changes in the JWST sun shield 
design could increase momentum build up by an order of 
magnitude. 
 The evolutionary multi-objective approach has 
advantages that go beyond optimization, however. By 
generating a population of candidate Pareto-optimal 
solutions, the end users of the schedule are given new and 
valuable insight into tradeoffs available to them. These 
tradeoffs are often the essence of real-world scheduling, 
in that generating “point” solutions do not address user’s 
questions and concerns about finding the “best” schedule 
for all stakeholders. By representing multiple objectives, 
it is possible to engage multiple participants in the 
scheduling process, and this is one of our directions of 
future research. 
 It is also worth pointing out that a key element of the 
multi-objective approach, that of keeping objectives 
separate until a selection decision is required, has a 
further virtue of not “hiding” some solutions. For 
example, while a linear combination of objectives with 
adjustable coefficients could be used to identify points on 
the Pareto frontier, this only works for convex frontier 
surfaces. There is no assurance that in realistic nonlinear 
problems, the surface is in fact convex. 
 In addition to investigating multi-participant 
scheduling, we plan to further extend this research in 
several other directions: 
• The most time consuming computation in the 

experiments reported here is the evaluation of the 
short-term schedule: we plan to investigate the use of 
parallelized schedule evaluations, possibly using grid 
techniques, to speed up the overall algorithm. 

• The significant improvements shown by “biasing” 
the initial population with heuristically generated 
seed solutions and the “reducer” heuristics given in 
(Giuliano et al 2007) suggest that investigation of 
additional heuristics would be worthwhile. 

 Design of the operational scheduling system for JWST 
started in the fall of 2007 and is on-going. One of the first 
components to be coded will be the routines that calculate 
JWST scheduling constraints. By integrating our system 
with these components we can incorporate the latest 
scheduling and momentum restrictions. A continuing 
challenge will be to integrate the algorithms developed 
above into the operational system. This requires adding 
features not included in the above experiments such as: 
• The insertion of momentum dumps if momentum 

buildup violates the 24 Nms limit. 
• Modeling slew durations between observations. 

These experiments assume a constant slew duration.  

• The addition of a schedule metric that measures the 
robustness of schedules uploaded to JWST when 
observations fail.  
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