
Multi-Objective Evolutionary Algorithms for Scheduling the
James Webb Space Telescope

Mark E. Giuliano
Space Telescope Science Institute

3700 San Martin Drive, Baltimore MD 21218
giuliano @stsci.edu

Mark D. Johnston
Jet Propulsion Laboratory/California Inst. Of Technology

4800 Oak Grove Drive, Pasadena CA 91109
mark.d.johnston @jpl.nasa.gov

Abstract
Effective scheduling of the James Webb Space Telescope
(JWST) requires managing the trade-off between multiple
scheduling criteria including minimizing unscheduled
time, angular momentum build-up, and the number of
observations that miss their last opportunity to schedule.
Previous studies examined momentum management and
wasted space and showed that effective JWST scheduling
requires modeling momentum as a resource that is three-
dimensional, where activities can either produce or
consume resources depending on when they are scheduled.
We enrich the scheduling model by adding the ability to
schedule JWST at different spacecraft roll angles and show
that this ability has a strong impact on managing
momentum. A series of multi-objective evolutionary
algorithms are developed which incorporate different
techniques to search the enriched domain. The algorithms
are empirically evaluated showing that the best solutions
are generated by the approach that evaluates the least
number of candidate solutions.

 Introduction
Effective scheduling of space based astronomy missions
requires the ability to make trade-offs between competing
mission objectives. A typical mission includes many
objectives such as increasing time on target, minimizing
use of consumables, minimizing the use of critical
mechanisms, and preferring the highest priority science
first. These objectives are often competing in that
improving one objective means making another worse.
The objectives also have different constituents lobbying
for them. For example, the mission science community
may have different needs from the engineering
community. Traditional scheduling optimization
techniques are generally based on a single objective that
combines all criteria into a single value, often by
weighting the values of the individual objectives.
However, this necessarily loses information about the
individual components of the objective, and pre-

 Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

determines the tradeoff among them. Multi-objective
scheduling techniques allow the retention of separate
objective components and thus for explicit visibility into
trade-offs.

Multi-objective scheduling is a good match for the James
Webb Space Telescope (JWST). In addition to typical
scheduling objectives such as minimizing schedule gaps
and minimizing the number of observations that miss their
last scheduling opportunity, JWST scheduling requires
the ability to minimize momentum build-up during
scheduling. JWST requires a sun shield about the size of a
tennis court to protect its science instruments from
overheating. Solar radiation pressure on the sunshield
causes angular momentum to accumulate in the
spacecraft’s reaction wheel assemblies as measured in
Newton meter seconds (Nms). The wheels have a limited
capacity to store momentum, and stored momentum must
be dumped using spacecraft thrusters. The resulting use of
non-renewable fuel to fire the thrusters makes momentum
management a potential limiting factor in the lifetime of
the mission. As the momentum accumulated by an
observation varies over time, momentum management is
expected to be a major constraint driving the efficiency of
JWST scheduling. The JWST momentum resource
constraint has several interesting features:
• the model is intrinsically three dimensional

Figure 1. James Webb Space Telescope

107

Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008)

• resource consumption for an observation varies over
time in non-linear manner

• resource consumption is vector additive in nature —
scheduling an observation at a particular time can
either add to or subtract from the overall
accumulation

• momentum provides both a hard constraint due to a
limited capacity, and a preference to consume as little
resource as possible.

These features are different from the types of resources
covered in the planning and scheduling literature (Laborie
2003; Policella et al. 2004) where activities consume and
release a constant capacity. In particular, the non-linearity
of the domain prevents us from employing techniques
commonly used to handle resource constraints.
 Previous studies on JWST scheduling (Rager and
Giuliano 2006, Giuliano, et al 2007) demonstrated
effective heuristics for scheduling JWST within a
simplified spacecraft model. In this paper we enrich the
scheduling model for JWST by introducing a spacecraft
roll decision variable and show that controlling spacecraft
roll is a major factor in limiting momentum build-up.
Scheduling systems can incorporate multiple decision
variables in many ways, ranging from optimizing all
variables at once, to having separate searches for each
variable. The choice of algorithm impacts the portion of
the search tree explored and the number of schedule
candidates evaluated. We examine different techniques
for incorporating a roll search into a multi-objective
evolutionary scheduling system, as well as heuristics for
scheduling. The resulting algorithms are empirically
evaluated based on experimental runs using a set of JWST
test observations showing that the technique that
evaluates the most solutions does not necessarily create
the best schedules.

JWST Mission Operations
The James Webb Space Telescope (JWST) is a large,
infrared-optimized space telescope, designed to find the
first galaxies that formed after the Big Bang. Components
of the mission are under construction and launch is
planned for 2013. JWST will have infrared sensitive
detectors and a 6.5-meter primary mirror designed to look
through dust clouds to see earliest formation of stars and
planets. The telescope will have a lifetime of 5 to 10 years
and will be placed in orbit 1.5 million km from Earth.
 JWST will provide time to general observers through a
time allocation board. Approved observers will prepare
their programs using an automated tool. Programs will be
submitted to the JWST Science Operations Center (SOC)
and will be scheduled by SOC staff using a two phase
scheduling process similar to the process used for the
Hubble Space Telescope (Giuliano 1998). In the first
phase, a long range plan assigns observations to
overlapping least commitment plan windows that are
nominally 60 days long. Plan windows are a subset of an

observation’s schedulable windows and represent a best
effort commitment to schedule within the window. In the
second phase, successive short-term schedules are created
for 22 day upload periods. The short-term scheduler uses
plan windows to drive the creation of efficient telescope
schedules. This two phase process allows a separation of
concerns in the scheduling process: Plan windows
globally balance resources, are stable with respect to
schedule changes, and provide observers with a time
window so they can plan their data reduction activities.
Short-term schedules provide efficient fine grained
schedules to the telescope, handle slews between
observations, and provide schedules robust to execution
failure.

JWST Scheduling Constraints
A scheduling system for JWST has to satisfy several
types of constraints on observations. First, an observation
has to satisfy all requirements defined by the user. These
include the ability to specify time windows for
observations, to link observations via precedence or
grouping relationships with offsets, and to link
observations via roll constraints.
 Secondly, an astronomical target can be observed by
JWST only at certain times of the year determined by the
location of JWST relative to the sun and the target. We
call such time intervals visibility windows. The celestial
position of the target being observed defines the visibility
windows. Ecliptic poles are visible throughout the year,
while a target on the ecliptic equator (i.e. on the same
plane as the Earth’s orbit) has two visibility windows of
about 49 days each.
 Thirdly, schedules must satisfy limits on momentum
accumulation. The current assumption is that stored
angular momentum will be dumped every 22 days during
regularly scheduled station-keeping activities. Momentum
buildup during a 22-day period over a 24 Nms limit will
require an extra momentum dump. As momentum dumps
require burning scarce fuel, extra dumps will shorten the
lifespan of the telescope. It is also preferable to minimize
the amount of momentum dumped during the regularly
scheduled dumps.
 Momentum accumulation can be controlled by
adjusting the spacecraft roll angle. At any pointing within
the field of regard, JWST can roll ±5° from the normal
angle without violating spacecraft constraints. Rolling the
telescope for an observation impacts the angle that the
solar pressure asserts on the sunshield, thus affecting the
momentum buildup for the observation.

Schedule qualities
The JWST schedule qualities we desire are the following:
1. Minimize schedule gaps. The JWST contract
mandates 97.5% scheduling efficiency. The input set
(described below) of 1.2 years worth of observations
provides 20% oversubscription to fill gaps in a one year

108

schedule. We expect this level of oversubscription in
operations and expect that operations will be able to
utilize special gap filling observations.
2. Minimize momentum accumulation. The current
operational plan is to dump momentum every 22 days
during station keeping maintenance. The goal for the
scheduler is to have no or very few 22-day periods that
require additional momentum dumps. In addition to the
24 Nms momentum limit, it is preferable to lower the
amount of momentum dumped during scheduled station
keeping maintenance as that reduces the amount of non-
renewable fuel to be used.
3. Minimize dropped observations. The JWST
scheduling process first assigns plan windows to
observations during long range planning. Plan windows
are a subset of an observation’s constraint window and
are created to balance global resources while informing
the astronomer when to plan data reduction activities.
Missing a plan window can disrupt the resource
balancing, break the handling of linked observations and
disrupt the plans of the astronomer end user. In the worst
case, a missed observation cannot be performed later in
the year and has to either be reworked or scheduled in the
next year.

Input Observation Set
The JWST project has created a Science Operations
Design Reference Mission (SODRM), which is a set of
observations that closely match the expected mission
duration, target distribution, instrument configuration, and
constraint selection. It contains the specifications for both
astronomical observations as well as calibration
observations. The entire SODRM amounts to
approximately 1.64 years of observations, including time
for slews and other support activities. To allow us to
compare with the previous studies we use the same subset
of the SODRM, totaling 1.2 years worth of observations,
as input to this study. It consists of 2907 observations,
including 1822 observations that are linked to at least one
other observation. Observation duration varies from 70
minutes to 12 days with a median of 2.08 hours.
 Scheduling constraints for observations in the SODRM
were calculated using the JWST Mission Simulator
(JMS). For each observation, JMS calculates the duration
(= exposure time + support activity time + slew time), its
visibility windows, and its momentum profile at every
3.65 days. JMS also passes user specified scheduling
constraints such as links between observations to SPIKE.
 To model momentum at different rolls JMS routines
were modified to provide momentum data at the normal
angle, +/-1.5 degrees, and +/- 3.0 degrees from normal.
Although larger rolls from nominal are legal they were
not considered as scheduling close to the legal limit could
create schedules that fail during on-board execution.
 The momentum routines were run using updated
spacecraft parameters that reflect best-case momentum

build-up. As a side effect, the momentum levels in the
experimental results cannot be directly compared to the
results presented in the previous studies.

Verifying Previous Results
Previous work on JWST scheduling (Giuliano et al. 2007)
developed a momentum balancing heuristic and showed
that it was effective in both long range planning and
short-term scheduling. Using the new roll data we
performed experiments to revalidate the previous results
and to determine the potential impact of using roll to
impact momentum build-up. The experimental setup from
(Giuliano et al. 2007) was repeated using the new roll
tables. The new results duplicate the previous experiments
showing that the heuristic was effective in both long
range planning and short-term scheduling reducing
momentum build up by up to 20 percent.

The Impact of Roll on Momentum Build-up
Next the short-term scheduling experiments were repeated
with a roll search being performed after each schedule
was created. The roll search assigned all scheduled
observations a random legal roll 100 times and picked the
schedule with the lowest momentum build-up. The results
show that even a random roll search has a major impact
on momentum build-up. Using the momentum heuristic
reduces build-up by 20%. Using a very simple roll search
resulted in 80% reduction in total momentum build-up.
 Based on these results our next set of experiments
concentrated on strategies for integrating a roll search into
short-term scheduling. The heuristic LRP generated to
perform the experiments summarized above was used to
drive the creation of schedules for three successive 22-day
resource bins. The experiments explore heuristics and
alternative methods for incorporating a roll search into an
evolutionary algorithm based application architecture.

Evolutionary Algorithms
A multi-objective optimization problem to minimize M
objectives subject to K constraints can be stated as
follows:
 minimize:

!

f i (x){ }, i = 1KM

 subject to:

!

g j (x){ }
T

" 0, j = 1KK

Here

!

x represents a vector in decision space of dimension
D. A solution is called Pareto optimal when no
improvement can be made to one objective that does not
make worse at least one other objective. The set of Pareto
optimal solutions is called the Pareto frontier. What we
seek as a solution to the multi-objective optimization
problem is a good approximation to the Pareto frontier.
Two important characteristics of a good solution
technique are convergence to the Pareto frontier, and
diversity so as to sample the frontier as fully as possible.

109

 We have adopted an evolutionary algorithm approach
(Deb 2001, Collete and Siarry 2003, Abraham, Jain, and
Goldberg 2005) to JWST scheduling. Among techniques
developed to solve multi-objective optimization problems,
evolutionary algorithms have become popular for a
variety of reasons. They have been shown effective on a
wide range of problems and are capable of dealing with
objectives that are not mathematically well behaved (e.g.
discontinuous, non-differentiable). By maintaining a
population of solutions they are capable of representing
the entire Pareto frontier at any stage. They also lend
themselves to parallelization, which is an important
performance consideration for large problems.
 For this study we have utilized one particular variant
called Generalized Differential Evolution 3, or GDE3
(Kukkonen and Lampinen 2005) which has been
previously used in multi-objective scheduling in a space
network application (Johnston 2006, 2008). This
technique is based on Differential Evolution, a single
objective evolutionary algorithm for real-valued decision
spaces (Price, Storn, and Lampinen 2005). GDE3 makes
use of concepts pioneered in the algorithm NSGA II (Deb
et al. 2002), including:
• non-dominated sorting of the population into ranks,

such that members of rank n dominate members of all
ranks >n, where rank 1 members constitute the non-
dominated set, i.e. the current approximation to the
Pareto frontier

• crowding distance is used as a secondary
discriminator on members of the same rank: members
in crowded regions of the population are scored
lower, so the surviving members after selection have
greater diversity. This helps prevent premature
convergence of the population to a small portion of
the Pareto frontier

• population members are compared with a domination
or constraint-domination relation — the latter allows
for domination comparisons even when constraints
are violated

 GDE3 operates as follows to evolve the population of
size N from one generation to the next:

1. For each parent member of the population

!

x
i
,

select three distinct population members

!

x
r
1

,

!

x
r
2

,

!

x
r
3

, all different and different from the parent

2. Calculate a trial vector

!

yi = xr1 + F " (xr2 + xr3) ,
where F is a scaling factor
3. Modify the trial vector by binary crossover with
the parent with probability CR. The result is
compared with the parent: if either the parent or trial
vector dominates the other, then that vector is
selected; if neither dominate, then both are selected
and the population size is reduced via the non-
dominated sorting and crowding distance
comparisons.

System Architecture
The system architecture for the experiments integrates
existing components (see Figure 2). The Java-based
GDE3 component is the multi-objective evolutionary
algorithm driver (Johnston 2006). The Lisp based SPIKE
system has a model of the JWST scheduling domain. The
evolver component sends SPIKE decision vectors that are
used to create schedules and to return objective function
values. The systems communicate via a socket
connection.

SPIKE (Johnston and Miller, 1994) is a planning and
scheduling tool kit that was created for use on the Hubble
Space Telescope and has been used for multiple orbital
and ground based astronomical missions including FUSE
(Calvani 2004), Chandra, Subaru (Sasaki 2000), and
Spitzer (Kramer 2000). SPIKE has several built-in
scheduling strategies and provides templates for creating
new strategies. The system supports iterative repair search
algorithms. The scheduler first makes an initial guess that
assigns a start time to all selected observation, possibly
assigning observations to conflicting times. In the repair
stage, SPIKE tries to reduce the number of conflicts by
re-assigning the start time of conflicted observations. At
the end of the repair stage, SPIKE removes the
assignments for observations with existing conflicts to
produce a conflict-free schedule. A simple set of gap
filling routines were designed for the experiments below.
 There are several potential strategies that could be
adopted for integrating these two components. At one
extreme, the multi-objective solver could incorporate a
model of the scheduling domain in some detail; at the
other, all of the detailed scheduling domain knowledge
would be retained strictly in the SPIKE component. We
opted for the latter strategy in the work described here:
this shows the relative ease with which a multi-objective
solver can be combined with a scheduler that was not
designed with this in mind, and also prevents the
duplication of constraint checking and objective
evaluation algorithms that would otherwise be required.

Figure 2. System Architecture

110

Evaluating the Evolutionary Algorithm
Approach
Experiments were performed to evaluate the evolutionary
algorithm approach to JWST scheduling. An initial
implementation utilized two layers of evolutionary search.
A top-level algorithm repeatedly calls SPIKE to create
and evaluate schedules. A lower level embedded loop
searches the roll space for each schedule created.
 The top-level evolutionary algorithm creates, evaluates
and evolves population members that are represented as
decision vectors with values in [0,1]. The vector contains
a value for each observation in the long range plan for the
22-day bin. SPIKE uses the vector to drive the creation
and evaluation of a schedule. The observations
schedulable in the 22-day bin are sorted by the vector
value and SPIKE schedules the first 22-days worth of the
observations on the sorted list. SPIKE then removes
conflicts and applies gap-filling algorithms that can
schedule any observation schedulable in the bin. For each
schedule, SPIKE returns the gap and dropped observation
metric values. The evolver runs a population of 20
candidates for 20 generations calling SPIKE 400 times to
create a schedule.
 After each schedule is produced by SPIKE a roll search
is performed that explores the possible roll assignments
for the observations on the schedule, searching for roll
angle assignments that minimize the total momentum
build-up. An evolutionary roll algorithm was compared to
a search that randomly assigns orientation values. In the
evolutionary algorithm approach each decision vector
contains a 0-1 element for each observation that was

scheduled in the top-level search. SPIKE routines map the
vector values into legal offsets from nominal and evaluate
the total momentum usage of the schedule. The
evolutionary roll search also runs a population of 20
candidates for 20 generations. After the roll search
finished, the best momentum value is given to the top-
layer evolver as the momentum metric.
 In summary, the search is divided into two layers. The
top layer repeatedly creates and evolves schedules. For
each schedule created, a second embedded layer searches
over the possible roll assignments for the observations in
the schedule. The top-level search creates and evaluates
400=20x20 schedules. Likewise, the lower level search
creates and evaluates 400 roll assignments for each of the
400 schedules. This gives a total of 160,000 schedules
evaluated.
 As originally defined, the GDE3 algorithm starts with a
randomized population, in order to start with a wide range
of candidates sampling a large portion of objective space.
This helps ensure that the evolved population generates a
broad sampling of the Pareto frontier. Since the method is
elitist, non-dominated solutions will remain in the
population from one generation to the next. While
randomness in the initial population does indeed help with
diversity in the final population, it can lead to
unnecessarily many solution evaluations. Motivated by
this, we experimented with biasing or “seeding” the initial
population with a mixture of heuristic-generated
solutions. We sought a balance between a randomized
population, and one with a starter set of candidates that
help speed the evolution.

Figure 3a-c. Compares evolutionary versus random search by plotting the Pareto optimal surface
generated for a 22-day schedule for each pair of metrics. The hollow data points are those in the Pareto
Optimal surface obtained by combining the schedules from all four scheduling approaches.

111

A simple heuristic was designed that helps to minimize
the number of dropped observations. By default the
evolutionary algorithm generates a set of random solution
vectors for the initial population. The heuristic biases the
decision vector so that values for “must-go” observations
were randomly distributed in the range 0-0.5, while values
for non “must-go” visits were distributed in the range 0.5-
1.0. Using random values in two different ranges allows
for diversity while ensuring that the underlying
scheduling algorithm will include the “must-go”
observations in the schedules created for the initial
population.
 The effectiveness of GDE3 search is compared with
random search algorithms that repeatedly populate
decision vectors with randomly generated values. Two
variables are considered in these experiments:
• Whether or not the top-level search uses a GDE3

versus random search.
• Whether or not the embedded roll search uses a

GDE3 versus random search.
Varying the two variables gives four combinations, with
results summarized in Figures 3a-c.
The experiments were run on three successive 22-day
schedule bins. As the results were consistent across bins,
the experimental results from bin3 were selected for
display. The results for each experimental combination
are shown in Figures 3a-c. Each subfigure graphs a pair of
criteria values for solutions on the Pareto frontier. The
results show that using differential evolution in both the
top-level and the roll search results in the best schedules.
Using the evolving search at the top-level and a random
roll search is the next best and the other two approaches
result in significantly worse schedules. To further
quantify the benefits we combined the metric results from
all four runs and created a combined Pareto-optimal
frontier (shown as hollow points in Figures 3a-c). We

then determined which scheduling approach contributed
most to the combined frontier. Using the evolver in both
steps produced 56% of the combined frontier. Using the
evolver just at the top level produced 35% of the
combined frontier with the two random approaches
producing 3% and 6% respectively.
 An additional experiment was performed to further
verify the effectiveness of the differential evolution
algorithm over a random search when searching for roll
assignments. Forty generations of evolutionary roll search
were run on 200 schedules and the resulting best
momentum for each schedule was stored. For each of the
schedules, a random roll search was performed and the
number of random assignments required to obtain a
momentum that is as good as the corresponding evolving
search was determined. Each of the evolving roll searches
evaluates 40 generations times 20 population size = 800
roll assignments. The random search times out after
25,000 random roll assignments. The average number of
random roll assignments was about 16,000. However,
approximately half of the random searches time out. So
the evolving roll search is at least 20 times more effective
than a random search in terms of the amount of additional
work required to find as good a solution.

Alternative Approaches to Integrating Roll
Search
The experiments presented above show that an evolving
roll search is effective at reducing momentum buildup.
While running the experiments we informally observed
that evaluating a roll decision vector is about an order of
magnitude quicker than evaluating a schedule vector. This
imbalance suggested that we should explore alternatives
to the embedded roll search approach.

Figure 4a-c Compares three alternative approaches to integrating a roll search by plotting the Pareto optimal surface
generated for a 22-day schedule for each pair of metrics. The hollow data points are those in the Pareto Optimal surface
obtained by combining the schedules from the three approaches to integrating a roll search.

112

 The nature of the roll objective, determined by a set of
roll angle control variables that can be applied to any
existing schedule, suggests that the overall optimization
problem may be at least in part decomposable with
respect to task ordering and roll. Reducing the
dimensionality of the problem objective space can lead to
major savings in runtime, and so we have conducted
experiments to explore this. An advantage of pursuing
this decomposition is that, for a fixed population size,
filling out a 2D vs. a 3D Pareto frontier will show
significantly better sampling.
 Two additional approaches to integrating a roll search
into the overall search process were considered. In the
first, we performed a single level evolutionary search that
attempted to optimize both sets of decision variables at
once: we call this the “all-at-once” method. The decision
vector had two entries for each observation schedulable in
the bin: one entry gave the sort order and the other the roll
assignment. The second alternative was to delay the roll
search until after a good set of candidate solutions were
generated. The evolutionary algorithm was run just
considering wasted space and minimizing dropped
observations. After the search completed, a roll search
was performed on all the population members that were
active in the last generation of the search. This second
approach effectively decomposed the problem into (1) a
two-dimensional multi-objective search, followed by (2) a
single-objective roll optimization for each of the members
of the final generation.
 One way to compare the algorithms is to have each
approach evaluate the same number of candidate
solutions. This approach is not used as the time to
evaluate a schedule is at least an order of magnitude
larger than the time to evaluate a roll assignment. Instead
we adjusted the number of generations expanded in the
different search approaches so that each search had more
or less the same runtime. The parameters were set as
shown in Table 1. (all population sizes are set at 20):

 Schedule and Roll Search

Candidates
Evaluated

Embedded 20 generations top level *
20 generations roll search

160,000 =
(20*20)*(20*20)

All-At-Once 150 generations combined
search

3000 =
150 * 20

Delayed 40 generations schedule +
100 generations roll

2,800 =
40*20 + 100*20

Table 1: Population members evaluated in different roll
scheduling approaches

The three alternate approaches were evaluated by running
them on three successive 22-day schedule bins. As in the
experiments described above the results are consistent
across the three bins. Figures 4a-c give the results for
bin3. The figures plot each pair of schedule metrics
against each other. In all three plots the delayed roll
search schedules dominate those from the other
approaches. As in the previous section we merged the

Pareto frontiers from the three different approaches and
created a single combined Pareto frontier (shown as
hollow points in figures 4a-c). The delayed approach
contributes 79% to this surface, while the embedded and
all-at-once approaches contribute 14% and 7%,
respectively. The delayed approach decomposes the
problem into separate searches for schedules and roll
assignment. Decomposing the search allows a deeper
schedule search than the embedded approach and a more
focused two-dimension search than the all at once
approach. Increasing the dimensionality of a search
generally requires a power of two more generations and a
corresponding increase in population size in order to get
results that fairly sample the Pareto frontier. The delayed
approach allows for a deep roll search over a single
dimension for the 20 schedules in the final generation.
The resulting momentum is lower than in the approach
where a shallow roll search is done for each generated
schedule.
 Decomposing the search into separate optimization
steps is effective as the search spaces do not interact. The
embedded versus the all-at-once approach results in better
momentum build-up. However, the all-at-once approach
is competitive when considering schedule gaps versus
dropped observations (see Figure 4b). The all-at-once
schedules fill in and extend the Pareto-frontier developed
in the delayed roll search approach. Having a deep 150
generation search is effective when optimizing schedule
gaps and dropped observations. The fact that the approach
that generated the least number of candidate schedules has
the overall best results shows the importance of choosing
the algorithmic approach which best matches the
application domain.

Conclusion
A JWST scheduling model that adds the ability to alter
momentum usage based on controlling spacecraft roll was
presented. The results of previous studies were
reconfirmed with updated momentum data, and the
importance of controlling roll to adjust momentum usage
was demonstrated. Evolutionary algorithms for short-term
scheduling a subset of the JWST design reference mission
were presented and shown to be more effective than a
randomized algorithm at optimizing the three important
objectives — wasted time, accumulated angular
momentum, and observations that miss their scheduling
window. Finally, three alternate approaches to integrating
a roll assignment search into the scheduling process were
presented ranging from optimizing the two sets of
decision variables all at once to decomposing the problem
into two separate search processes. Experimental results
were presented showing that for this domain, the best
approach is to decompose the problem into a schedule
search (minimizing wasted space and missed
observations) followed by a roll search (to minimize
angular momentum buildup).

113

 The new results show substantially lowered momentum
usage compared to the previous studies from 2006 and
2007. This is a result of the best-case spacecraft
parameters in calculating momentum usage and the ability
to control momentum usage by adjusting spacecraft roll
angle. Although the new results show low absolute
momentum build-up, they should not be taken to indicate
that momentum scheduling is not a serious scheduling
concern: for example, changes in the JWST sun shield
design could increase momentum build up by an order of
magnitude.
 The evolutionary multi-objective approach has
advantages that go beyond optimization, however. By
generating a population of candidate Pareto-optimal
solutions, the end users of the schedule are given new and
valuable insight into tradeoffs available to them. These
tradeoffs are often the essence of real-world scheduling,
in that generating “point” solutions do not address user’s
questions and concerns about finding the “best” schedule
for all stakeholders. By representing multiple objectives,
it is possible to engage multiple participants in the
scheduling process, and this is one of our directions of
future research.
 It is also worth pointing out that a key element of the
multi-objective approach, that of keeping objectives
separate until a selection decision is required, has a
further virtue of not “hiding” some solutions. For
example, while a linear combination of objectives with
adjustable coefficients could be used to identify points on
the Pareto frontier, this only works for convex frontier
surfaces. There is no assurance that in realistic nonlinear
problems, the surface is in fact convex.
 In addition to investigating multi-participant
scheduling, we plan to further extend this research in
several other directions:
• The most time consuming computation in the

experiments reported here is the evaluation of the
short-term schedule: we plan to investigate the use of
parallelized schedule evaluations, possibly using grid
techniques, to speed up the overall algorithm.

• The significant improvements shown by “biasing”
the initial population with heuristically generated
seed solutions and the “reducer” heuristics given in
(Giuliano et al 2007) suggest that investigation of
additional heuristics would be worthwhile.

 Design of the operational scheduling system for JWST
started in the fall of 2007 and is on-going. One of the first
components to be coded will be the routines that calculate
JWST scheduling constraints. By integrating our system
with these components we can incorporate the latest
scheduling and momentum restrictions. A continuing
challenge will be to integrate the algorithms developed
above into the operational system. This requires adding
features not included in the above experiments such as:
• The insertion of momentum dumps if momentum

buildup violates the 24 Nms limit.
• Modeling slew durations between observations.

These experiments assume a constant slew duration.

• The addition of a schedule metric that measures the
robustness of schedules uploaded to JWST when
observations fail.

Acknowledgments
Thanks to Reiko Rager, and Rob Hawkins for their
careful reading of the paper. Thanks to Nazma Ferdous
for help with the figures. Finally we would like to thank
the ICAPS reviewers for their comments.

The research described in this paper was carried out at the
Space Telescope Science Institute under the NASA
Applied Information Systems Research Program grant
number NNX07AV67G, and at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

References
Abraham, A., L. Jain and R. Goldberg (2005).
Evolutionary Multiobjective Optimization. Berlin,
Springer.
Calvani, H.M., Berman, A.F. Blair W.P. Caplinger, J.R.
England, M.N. Roberts, B.A. Hawkins, R. Ferdous, N.
and Krueger A.P., 2004. The evolution of the FUSE Spike
Long Range Planning System. In Proceedings of the 4th
International Workshop on Planning and Scheduling for
Space. Darmstadt Germany, 25-31.
Collette, Y. and P. Siarry (2003). Multiobjective
Optimization. Berlin, Springer.
Deb, K., Multi-Objective Optimization Using
Evolutionary Algorithms. (2001), New York: John Wiley
& Sons.
Deb, K., A. Pratap, S. Agrawal and T. Meyarivan (2002).
“A Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II.” IEEE Transactions on Evolutionary
Computation 6(2): 182-197.
Giuliano, M. 1998. Achieving Stable Observing
Schedules in an Unstable World. In Astronomical Data
Analysis Software and Systems VII. 271-274.
Giuliano, M., Rager, R., Ferdous, N. (2007) Towards a
Heuristic for Scheduling the James Webb Space
Telescope. In Proceedings of the International Conference
on Automated Planning and Scheduling. Providence,
Rhode Island. 160-167.

Johnston, M. and Miller, G. 1994. Spike: Intelligent
Scheduling of Hubble Space Telescope Observations. In
Zweben M. and Fox M. eds. Intelligent Scheduling, 391-
422. Morgan-Kaufmann.
Johnston, M. D. (2006). “Multi-Objective Scheduling for
NASA's Deep Space Network Array.” International
Workshop on Planning and Scheduling for Space

114

(IWPSS-06). Baltimore, MD, Space Telescope Science
Institute.
Johnston, M. D. (2008). “An Evolutionary Algorithm
Approach to Multi-Objective Scheduling of Space
Network Communications.” International Journal of
Intelligent Automation and Soft Computing: in press.
Kramer, L. 2000. Generating a Long Range Plan for a
New Class of Astronomical Observatories. In
Proceedings of the 2nd NASA Workshop on Planning and
Scheduling for Space.
Kukkonen, S. and J. Lampinen (2005). “GDE3: The Third
Evolution Step of Generalized Differential Evolution.”
The 2005 Congress on Evolutionary Computation.
Laborie, P. 2003. Algorithms for Propagating Resource
Constraints in AI Planning and Scheduling: Existing
Approaches and New Results. Artif. Intell. 143(2):151--
188.
Policella, N., Oddi, A., Smith S.F., and Cesta, A.
Generating Robust Partial Order Schedules. In Proc of CP
2004,Lecture Notes on Computer Science (LNCS) Vol.
3258, pp. 496-511, M. Wallace (Ed.), Springer, 2004.
Price, K., R. Storn and J. Lampinen (2005). Differential
Evolution: A Practical Approach to Global Optimization.
Berlin, Springer.
Rager, R. and Giuliano, M. 2006. Evaluating Scheduling
Strategies for JWST Momentum Management. In
Proceedings of the 5th International Workshop on
Planning and Scheduling for Space, 235-243.
Sasaki, T., Kosugi, G., Kawai, J., Kusomoto, T., Koura,
N., Kramer, L., Krueger, A., Miller, G. 2000. Observation
scheduling scheme for the Subaru Telescope, In
Proceedings of Advanced Telescope and Instrumentation
Control Software, ed. Hilton and Lewis, SPIE Vol 4009,
350-354.

115

http://www.aaaipress.org

	ICAPS 2008
	Home
	Contents
	Index
	ICAPS Conferences

