
Application of an Incremental Evolution Technique to Spacecraft Design
Optimization

Alex S. Fukunaga
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, MS 525-3660

Pasadena, CA 91109-8099
alex.fukunaga@jpl.nasa.gov

Abstract

Based on the intuition that it is often easier to learn to solve
difficult problems after similar, simpler problems have been
learned, incremental evolution is a recently proposed exten-
sion to evolutionary algorithms in which the evaluation func-
tion against which a population is evolved is scaled over time.
This paper presents an application of incremental evolution
to the problem of physical design optimization of a Mars mi-
croprobe spacecraft. Experimental results that demonstrated
the utility of the approach are presented, as well as some new
insights into the behavior of incremental evolution which may
explain its success.

1 Introduction

Evolutionary optimization algorithms such as genetic al-
gorithms [4] are an approach to optimization that uses
biologically-inspired selection, recombination and mutation
operators to evolve a population of candidate solutions to a
problem, in a process analogous to biological evolution. Much
of the work on evolutionary optimization has focused on in-
vestigation of the mechanics of the search algorithm, i.e., the
mechanisms by which the space of solutions is explored.

A complementary approach is to focus on the searchability
of the solution space that is explored (that is, by the fitness
function over the space of possible solutions). Incremental
evolution [5, 3] is an extension to evolutionary optimization
which decreases the computational effort of evolving the solu-
tion to a difficult problem by first evolving solutions to “easier”
problems.

The intuition behind this approach is attractive:

� It is often easier to learn difficult tasks after simpler tasks
have been learned; and

� It may therefore be advantageous to use an “easier” fitness
function when evolving solutions to complex problems.

This intuition is consistent with the phenomenon of scaffold-
ing, which has been studied in psychology [12].

Previous approaches that are related to incremental evolu-
tion include work in optimization in a dynamic environment
([11, 2, 10]), multi-phasic fitness environments ([1]), coevolu-
tion ([7]), and methods for test case selection for evolutionary
algorithms [9, 13]. See [3] for a full discussion on the re-
lationship between incremental evolution and these other ap-
proaches. Previous works that have discussed the application
of incremental evolution techniques are [6, 5, 3].

This paper presents the application of incremental evolu-
tion to a real-world, spacecraft design optimization problem
– the physical design optimization of a Mars soil penetra-
tor microprobe. Based on the experimental results in this
domain, new insights into the incremental evolution mech-
anism are presented. The rest of the paper is organized as
follows: In Section 2, we review the incremental evolution
technique. In Section 3, we describe the Mars microprobe
design problem. Section 4 presents experimental results in
the Mars microprobe domain, demonstrating that incremen-
tal evolution can yield significant performance improvements
over conventional optimization, and an analysis of the results
to better understand why incremental evolution is successful.
Section 5 concludes the paper with a discussion and directions
for future work.

2 Incremental Evolution

The essential idea of incremental evolution is to scale the
evaluation function (i.e., the “fitness function” against which,
say, a candidate solution is evolved) over time, with the aim
of minimizing the overall time spent evolving a controller
that achieves the prescribed task. Suppose that our goal is
to generate, within a prescribed time limit T , a solution to
optimize some evaluation function G. The problem of in-
cremental evolution is to derive a set of intermediate evalua-

1



initialize(Pop)
F := G0

evaluate(Pop; F )
for evalfunc := 0 to k � 1
F := Gevalfunc

for gen := 0 to tevalfunc
Pop :=mutate(recombine(Pop))
evaluate(Pop; F )

end for
end for

Figure 1: Algorithm schema for an incremental evolutionary
algorithm. Pop is a population of candidate solutions; F is
an evaluation function.

tion functions G = (G0; G1; : : : ; Gk�1 = G) and a schedule
S = (t0; t1; : : : ; tk�1), such that t0 + t1 + : : : + tk�1 = T .
The population of candidate solutions is sequentially evolved
using evaluation function Gk for time tk, beginning with G0

for time t0.
Let �(G;S; Q) be the total processing effort (e.g., CPU

time) required to evolve a solution of quality Q for the task
G, given the sequence of tasks G and the schedule S. Given
any final evaluation function G and a desired solution quality
Q, we wish to be able to choose (G;S) so that �(G;S; Q) is
minimized. This is a non-trivial, meta-level optimization, and
a methodology for computing optimal (G;S) sequences for
arbitrary G is unlikely. Indeed, certain choices of (G;S) may
result in a performance degradation when compared with the
trivial schedule that uses G0 = (G) and S 0 = (t0 = T ), that is
to say, �(G;S; Q) > �(G0;S 0; Q).

In this paper, we restrict our attention to two-stage in-
cremental evolution, where there is only one intermediate
task (i.e., evaluation function) and only one transition be-
tween evaluation functions. In other words, we use k = 1,
G = (G0; G1), and S = (t0; t1 = (T � t0)); it is understood
that G1 is the final, or “target”, evaluation function G.

Figure 1 shows a simplified, general schema for the k-stage
incremental evolution, where initialize, evaluate, recombine,
mutate are domain-specific operators applied to the popula-
tion. For example, for two-stage incremental evolution, there
is a transition between the two fitness functions G0 and G1

at generation t0. evaluate computes the fitness values of the
members of a populationP (t) with respect to fitness function
F (which, in the case of two-stage incremental evolution, is
either G0 or G1, depending on t).

3 The Mars Soil Penetrator Microprobe

As part of the NASA New Millennium program, two micro-
probes, each consisting of a very low-mass aeroshell and pene-

trator system, are planned to launch in January, 1999 (attached
to the Mars Surveyor lander), to arrive at Mars in December,
1999. The 3kg probes will ballistically enter the Martian atmo-
sphere and passively orient themselves to meet peak heating
and impact requirements. Upon impacting the Martian sur-
face, the probes will punch through the entry aeroshell and
separate into a fore- and aftbody system. The forebody will
reach a depth of 0.5 to 2 meters, while the aftbody will remain
on the surface for communications.

Each penetrator system includes a suite of highly miniatur-
ized components needed for future micropenetrator networks:
ultra low temperature batteries, power microelectronics, and
advanced microcontroller, a microtelecommunicationssystem
and a science payload package (a microlaser system for de-
tecting subsurface water).

We applied incremental evolution to optimize the physical
design parameters for the Mars microprobe. The microprobe
optimization domain in its entirety is very complex, involv-
ing a three-stage simulation: stage 1- separation analysis (i.e.,
separation from the, Mars Surveyor), stage 2- aerodynamical
simulation, and stage 3- soil impact and penetration. The
complete design model for the penetrator is currently under
development. Below, we describe the optimization of the cur-
rent model, which implements the stage 3 (impact/penetration)
problem.

Given a number of parameters describing the initial condi-
tions including the angle of attack of the penetrator, the impact
velocity, and the hardness of the target surface, the optimiza-
tion problem is to select the total length and outer diameter of
the penetrator, where the objective is to maximize the ratio of
the depth of penetration to the length of the penetrator. A fit-
ness value of zero indicates a complete failure on behalf of the
probe (e.g., a design that would bounce off the target surface).
A negative fitness value indicates a design that is not physi-
cally realizable – note that this is not possible to determine a
priori without consulting the simulation.

4 Experimental Results

To evolve solutions for the Mars microprobe design optimiza-
tion problem, we used a standard, generational genetic algo-
rithm using one-point crossover and and a bit-flipping muta-
tion operator [4]. The population size was 50, and each run
was 100 generations. The crossover rate was 0.6, and the
mutation rate was 0.01 per bit. Each parameter was encoded
as a 32-bit bit string.

4.1 Generating New Evaluation Functions for
Incremental Evolution

In order to generate new evaluation functions for incremental
evolution (i.e., G0), we consider the initial condition variables

2



which specifies the hardness of the target surface (measured
by a soil number – the higher the soil number,the softer the
surface). Intuitively, the softer the target surface, the easier it
is to penetrate the surface.

Thus, for our two-stage incremental evolution experiments,
we generate G0 as follows: G0 is identical to the “true eval-
uation function” (G1), except that in the soil penetration sim-
ulation, target soil number is set differently than for G1 (For
G1, soil number = 7). soil number was varied between 3 (very
hard) and 14 (soft).

In all of the experiments below, we set t0 = 30. That
is, the transition between G0 and G1 occurred after the 30th
generation.1.

4.2 Incremental Evolution Results

We say that (G0; t0) successfully primes for G1 if
�((G0; G1); (t0; t1); Q) < �((G1); (t0 + t1); Q), i.e., the in-
cremental evolution reduces the time required to reach the
prescribed solution quality Q.

Figure 2 shows the performance of incremental evolution
for various G0, where the soil number used to determine G0

was varied between 3 and 14 (hereafter, we say “soil=x” to
denote the choice of G0 for which the soil number is x.) The
control experiment is soil=7 (i.e., G0 = G1), which corre-
sponds to the standard genetic algorithm. Each curve shows
the mean of 30 independent runs of incremental evolution.
In general, the higher soil numbers for G0 were correlated
with better performance, that is, G0 with higher soil numbers
successfully primes for soil=7. Soil=14 significantly outper-
formed the control case (soil=7), while (soil=3) performed
significantly worse than soil=7.

4.3 Analysis

In order to gain some insights into the results of the previous
section, we analyze the cost surfaces used for G1. Figure 3-5
show sampled portions of the G1 cost surfaces used in the
experiments above. The sampling resolution was one point
every 0.02 inches for outside diameter, and 0.04 feet of total
penetrator length.

Several observations can be made about the structure of the
cost surfaces. First, in general, the cost surfaces are quite
“rugged”, in that points with positive fitness are interspersed
with points of zero and negative fitness.2 This is a significant
factor in determining the relative difficulty of a cost surface
for an evolutionary algorithm. Second, there is an apparent
correlation between the soil number and the ruggedness of the

1We chose this transition schedule because it was shown empirically in [3]
that two-stage incremental evolution yielded the best performance when the
transition between G0 and G1 occurred at an early stage of the optimization

2We emphasize that the figures show sampled points on the cost surface,
and are not meshes.

Page 1

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Generation

D
ep

th
 o

f P
en

et
ra

tio
n 

/ L
en

gt
h 

of
 P

en
et

ra
to

r

soil=3
soil=5
soil=7
soil=11
soil=14

Figure 2: Performance of incremental evolution using priming
(G0) functions where the soil number was varied between 3
(hard soil) and 14 (soft soil). The control case (i.e., G0 = G1

is soil=7). Each curve shows the mean of 30 independent runs.

"v459s14"

0.5

1

1.5
0.5

1
1.5

2
2.5

3
3.5

-1

-0.5

0

0.5

Total Length (feet)

Outside Diameter (inches)

Figure 3: Sampled cost surface of G0, where soil = 14 (soft
soil). The z-axis represents the fitness value.

surface. The cost surfaces for G0 with higher soil numbers

3



"v459s7"

0.5

1

1.5
0.5

1
1.5

2
2.5

3
3.5

-1

-0.5

0

0.5

Total Length (feet)

Outside Diameter (inches)

Figure 4: Sampled cost surface of G0, where soil = 7 (moder-
ately hard soil). The z-axis represents the fitness value.

"v459s3"

0.5

1

1.5
0.5

1
1.5

2
2.5

3
3.5

-1

-0.5

0

0.5

Total Length (feet)

Outside Diameter (inches)

Figure 5: Sampled cost surface of G0, where soil = 3 (very
hard soil). The z-axis represents the fitness value.

are smoother than the cost surfaces for G0 with lower soil
numbers.

For example, compare the cost surface for soil=14 (Figure
3) versus the cost surface for soil=3 (Figure 5). For soil=14,
the cost surface consists of two “planes”: The top plane (where
the fitness values are above zero) represents the set of phys-
ically realizable designs, all of which successfully penetrate
the target surface, while the lower plane (where the fitness
values are below zero) represents the set of designs which
are physically unrealizable. In constrast, the cost surface for
soil=14 consists of three planes. As with soil=3, there is the
set of designs whose fitnesses are positive, and a set of de-
signs whose fitnesses are negative.3 In addition, some designs

3Note that the region of physically unrealizable designs is identical, since

yield a fitness of zero (mission failure), resulting in a third
plane at fitness=0. This results in an obviously more irregular
(“bumpier”) cost surface than for soil=3.

Finally, it is clear that the overall structure of the surfaces
are quite similar, e.g., the global maxima of the samples are
around (length=0.5 feet, diameter=0.5 inches) in all cases.

This suggests a possible explanation for the behavior of
incremental evolution in this domain. First, choosing aG0 that
is smoother than G1 in effect “smooths” the search space for
the evolutionary algorithm, providing an easier cost surface.
Second, if the overall structures of G0 and G1 are similar,
then finding good solutions in the space of G0 correspond
to finding good solutions in the space of G1. Thus, if G0 is
chosen appropriately, incremental evolution is like searching a
smoothed approximation ofG1 that is easier to search thanG1;
because the evolutionary algorithm is less likely to get stuck
in local minima in the less bumpy surface of G0, progress
towards a global near-optimum is faster.

[3] noted the need for a theory of the relationship between
“problem difficulty” and incremental evolution success. We
now have the beginnings of such a theory,based on cost surface
structure. Although the first studies of incremental evolution
[3, 6, 5] were clearly inspired by the intuitive notion of “learn-
ing easier tasks before more difficult tasks”, e.g., it is “easier”
to penetrate the target surface if the target is softer, the results
of this paper and [3] strongly suggest that such naive notions
of “easy” and “hard” problems are not sufficient to predict
the success of incremental evolution. To develop a normative
theory of incremental evolution, attention should be focused
not on easy/hard “problems” (in the intuitive sense), but on
the analysis of easy/hard cost surfaces for a particular search
algorithm.

5 Discussion and Future Work

The major contributions of this paper has been to demonstrate
the utility of incremental evolution for real-world optimization
problems, and to offer some new insights that could explain
how the mechanism operates. Although [3] demonstrated sta-
tistically significant improvements (over standard evolution)
when using incremental evolution in two artificial optimiza-
tion domains (the Tracker [8] foraging domain and a pursuit-
evasion game), the results were somewhat mixed, in that it
was not clear under what circumstances the approach would
be successful.

The results in this paper provide support that incremental
evolution is a viable approach in practice for real-world op-
timization problems – a genetic algorithm with incremental
evolution was able to find higher-quality solutions in less time

whether a design is realizable or not is independent of environmental condi-
tions such as soil hardness.

4



than a standard genetic algorithm on the Mars microprobe
design problem.

In addition, this paper has yielded some interesting in-
sight into how the incremental evolution mechanism operates.
Since the domain is a problem with only two decision vari-
ables (probe length and outer diameter), it was possible to
visualize the cost surfaces of the priming functions (this was
not possible in the higher-dimensional problems studied in
[3]). Our analysis suggest two factors that are important in
order for priming (improved performance) to be observed in
the application of incremental evolution:

� The structure of the priming and target evaluation func-
tions should be similar (with respect to the location of
the near-optimal points); and

� The structure of the priming function cost surface should
be “easier” to search than the target evaluation function.

In future work, we will test these conjectures by investigating
the behavior of incremental evolution using some synthetic
cost functions for which we can easily control the above char-
acteristics of the priming functions.

Currently, incremental evolution is applied by manually
choosing the priming functions and the schedule (i.e., G0 and
t0), and observing the results. One could automate this proce-
dure by iteratively choosing values ofG0 and t0. Although this
would be a time-consuming procedure, it can be worthwhile
if higher-quality solutions can be found using incremental
evolution.4 Since we now have a qualitative theory (based on
the priming function cost surface structure) that predicts the
success incremental evolution, we are currently investigating
methods for exploiting the theory to efficiently automate the
incremental evolution process to some extent. For example,
given a G0, it may be possible to sparsely sample its cost
surface and estimate the degree to which the two conditions
described above are satisfied. These estimates can then be
used to prioritize the order in which priming functions are
used for G0.

Acknowledgments

The research described in this paper was performed by the
Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Ad-
ministration. Bob Glaser provided the simulation software for
the Mars microprobe model. Thanks to Andre Stechert and the
anonymous reviewers for helpful comments and suggestions
on this paper.

4Note that in Figure 2, incremental evolution is discovering better solutions
than those found by the conventional method, by the time the algorithms
apparently converge.

References

[1] D. Andre. Evolution of mapmaking: Learning, plan-
ning and memory using genetic programming. In Proc.
IEEE International Conf. on Evolutionary Computation
(ICEC), pages 250–255, 1994.

[2] H.G. Cobb and J.J. Grefenstette. Genetic algorithms
for tracking changing environments. In Proc. Fifth In-
ternational Conference on Genetic Algorithms, pages
523–530, 1993.

[3] A.S. Fukunaga and A.B. Kahng. Improving the perfor-
mance of evolutionary optimization by dynamically scal-
ing the evaluation function. In Proc. IEEE International
Conf. on Evolutionary Computation (ICEC), 1995.

[4] D.E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Addison-Wesley, 1989.

[5] I. Harvey, P. Husbands, and D. Cliff. Seeing the light:
Artificial evolution, real vision. In From Animals to
Animats 3: Proceedings of the Third International Con-
ference on Adaptive Behavior, pages 392–401, 1994.

[6] I. Harvey, P. Husbands, and D.C. Cliff. Issues in evolu-
tionary robotics. In From Animals to Animats 2: Pro-
ceedings of the Second International Conference on Sim-
ulation of Adaptive Behavior, pages 364–374, 1992.

[7] D. Hillis. Co-evolving parasites improve simulated evo-
lution. Physica D, 42:228–234, 1990.

[8] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flow-
ers, R. Korf, C. Taylor, and A. Wang. Evolution as a
theme in artificial life: The genesys/tracker system. In
C. Langton, C. Taylor, J. Farmer, and S. Rasmussen, ed-
itors, Artificial Life II, pages 549–577. Addison-Wesley,
1992.

[9] J. Koza. Genetic Programming: On the Programming
of Computers By the Means of Natural Selection. MIT
Press, 1992.

[10] M.L. Littman and D.H. Ackley. Adaptation in constant
utility non-stationary environments. In Proc. Fourth In-
ternational Conference on Genetic Algorithms, pages
136–142, 1991.

[11] C.L. Ramsey and J.J. Grefenstette. Case-based initializa-
tion of genetic algorithms. In Proc. Fifth International
Conference on Genetic Algorithms, pages 84–91, 1993.

[12] J. Rutkowska. Emergent functionality in human infants.
In From Animals to Animats3: Proceedings of the Third
International Conference on Simulation of Adaptive Be-
havior, pages 179–188. MIT Press, 1994.

[13] A. C. Schultz. Adapting the evaluation space to improve
global learning. In Proc. Fourth International Confer-
ence on Genetic Algorithms, pages 158–164, 1991.

5


