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Abstract

This paper describes the use of aggregation techniques to improve the efficiency of search finding legal temporal placements for sets of interdependent activities.  Our approach computes the aggregate state and resource requirements of a cluster of interdependent activities and searches for a minimally conflicting temporal placement for this cluster of requirements.  We first define the state, resource and temporal constraints we consider, and describe the difficulty in determining a placement for a set of interdependent activities.  Second, we describe an algorithm for aggregating resource and state requirements and for searching for placements of aggregate resource state profiles.  Third, we show that our aggregation search method outperforms the alternative approach of searching for legal placements of the constituent activities individually on both synthetic problems and problems from planetary rover and spacecraft operations domains.

1.  Introduction

Automated planning and scheduling has shown considerable promise in enabling faster decisions, better decisions, and decisions incorporating more information in a wide range of application areas ranging from production management, supply chain optimization, to spacecraft operations.  However, as these systems scale up to real-world problems, they must be able to represent complex resource, state, and temporal constraints while solving large problems.  It is in the ability to increase the richness of problems represented while efficiently finding solutions that the success of these approaches will be measured.


One difficulty of scaling up is the ability to solve problems involving large number of activities, states and resources.  As the number of activities increases, the search space relating to activity placement tends to grow exponentially.  Additionally, as the number of states and resources grows, the number of decisions and checks to determine whether or not an activity placement is valid increases, further increasing computational difficulties.  Large problems are difficult because of problem interactions through complex, interlinked activities.  Often a set of activities is tightly coupled through resource and/or state usage or enablement.  For example, one activity may control a state which a subsequent activity requires (such as activity A turning on a piece of equipment that satisfies a requirement for activity B).  Or an activity may deplete a resource that is subsequently renewed by another activity (such as activity A producing data stored in a buffer which is then transmitted by activity B, freeing the buffer resource).  These highly interdependent activities cause difficulties in search because a change to one of the activities typically significantly affects the interlinked activities, thus it is difficult to propose changes in the placement of one of the activities without a detailed analysis of the options of re-placement of the linked activities.


Interdependent activities are challenging because they stymie local search approaches.  Local, heuristic problem-solving methods [6, 12] have been used with considerable effectiveness in solving some large-scale problems.  Unfortunately, interdependent activities cause difficulties to local search methods.  This is because in order to resolve a problem with one of the coupled activities, the plan is likely to require modification of all of the clustered activities.  To the local search, when changing a single one of the activities, it appears that resolution of a single conflict has caused emergence of a large number of new conflicts that may take considerable effort to resolve.  Thus, the local search method observes a local maxima.


This paper describes an approach to solving the problem of placement of interdependent sets of activities.  In this approach, we compute an aggregate profile that encapsulates the requirements and effects of the activities on states and resources.  This aggregate profile is then used to determine legal (or best possible) placements for the complete set of activities allowable in the current plan.


This problem of placement of activities is an important aspect of solving combined planning and scheduling problems.  In many approaches to combined planning and scheduling, one alternates between finding activities to satisfy state and temporal constraints (planning) and finding temporal assignments and resources for those activities (scheduling).  Complex activity placement is also an important component of many scheduling problems, as finding temporal assignments for complex activities can be computationally challenging.

2. Problem Definition 

We address the problem of finding legal placements for complex activities.  A legal placement for an activity is the assignment of its start- and end-times such that no constraints in the problem are violated.  In this section we define the constraints that we use to represent the problem.


The activity is the basic component of a plan.  Activity schemas correspond to types of activities. Activity instances that occur in a plan must respect the general constraints defined by the schemas.  An activity schema has temporal constraints that require all instances of the activity to satisfy interval temporal relations with respect to other activities in a plan.  For example, every instance of a machine action may require that there be an instance of a calibrate action from 10 to 120 time units beforehand.   In general, a temporal constraint for an activity A specifies that there must exist and activity B of type T with R(A,B) holds for a specified temporal relation R that relates the start- or end-point of A to the start- or end-point of B (e.g., A ends after the start of B).


An activity schema may also specify state and resource constraints  (also called reservations).  For example, the machine action may require 20 units of power (a resource constraint) and that the specified machine is ON (a state constraint).  


Our model of states (and resources) is based on timelines, where a timeline is a representation of a discrete variable over time.  A timeline is a series of ground values and each element in this series is called a timeline unit. The start and end of each unit is grounded (that is to say it is an absolute point in time).  No two units overlap in time and no gaps in value assignments appear from the start of the timeline to the end.  


State and resource timelines have problem instance constraints.  For example, a problem instance constraint on a resource may specify the minimum and maximum legal value for a resource variable.  A problem instance constraint on a state timeline may specify the legal state transitions that are allowed for that state variable.


Activities also have state and resource requirements and influences (called reservations).  There are two types of state reservations: 1) changers and 2) users.  A state-changer reservation assigns a value to a state-variable starting at the state-changer’s start-time and continuing until another state-changer or the end of the planning horizon.  The start-time of a state-changer is the same as the start-time of the activity containing it.  A state-user reservation constrains the value of a state variable over its temporal extent.  The temporal extent of a state-user is the same as the temporal extent of the activity containing it.  Resource reservations require the availability of a resource.  There are two types of resources: depletable and non-depletable.  If the resource is depletable, an activity’s usage of the resource reduces the resource availability in perpetuity (such as fuel).  If the resource is a non-depletable, the resource is returned at the end of the reservation (such as use of a piece of equipment).


We now return to the problem addressed by this paper: given a plan P with an existing set of activities A1, find placements for a new set of interdependent activities A2 that is consistent with all constraints of all activities in A1 and A2.


The constraints of activities in A1 may be resource or state constraints. Activities in A2 contain temporal constraints as well as resource and state constraints. Temporal constraints are one example of how multiple activities may be linked together as groups. The constraints of activities in A1 and A2 are consistent when considered independently. Constraints are violated only when A1 and A2 are combined.


However, moving an activity may violate its temporal constraints.  We can still move the activity, but then we will need to re-satisfy the temporal constraints of the activity.  In order to end up moving a set of interlinked activities the algorithm would need to move all of the related activities individually and then re-validate their temporal constraints.  Unfortunately, this is a large number of search steps to escape a local minimum (from the perspective of the number of violated constraints). 
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Figure 1

Moving Interlinked Activities


One solution is to consider all temporally “connected” activities in unison, thereby preserving the temporal constraints while satisfying reservations.  We call the application of such macro operations aggregate search
.  This method is depicted graphically above in section A of Figure 1.  The alternative, considering each of the constituent activities individually, is hown graphically in section B of the above Figure.  However, the reservations among the group of activities being moved may interact.  This complicates efficiently calculating legal intervals (if any exist) to move the group with respect to all reservations.


For example, consider a collection of activities: a science observation C that includes activities a1 and a2 where a1 precedes a2.  Activity a1 includes a state-changer reservation that constrains the “camera aperture” state to be “open” and a2 includes a state-user reservation that constrains the “camera aperture” state to be “open”, then a2’s reservation is satisfied by a1’s reservation (assuming no intervening activities’ reservations affect the state of the “camera-aperture”).  If we naïvely examine valid temporal locations for C with respect to the “camera-aperture” state by examining each reservation independently, then a2 can only be placed during an interval where the “camera-aperture” is already “open.”  This is incorrect because a1 is in C and will be moved along with a2.  Thus, in this case, the naïve approach would incorrectly report some legal placements as illegal. 

[image: image1.wmf]A: Moving Interlinked Activities as an Aggregate Activity
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Figure 2   Camera Aperture


Now consider a complex activity C where a1 uses 5 MB of memory storage and a2 uses 10 MB of memory storage.  Also suppose that before a 10 a.m. downlink, we have a total of 10 MB storage available and after 10 a.m. we have 30 MB of storage available.  If we naïvely examine valid temporal locations for C as before, a1 can be placed anywhere that there is 5 MB storage and a2 anywhere that there is 10 MB storage available so that C could occur either before or after 10 a.m.  This is incorrect because a1 and a2 negatively interact.  The naïve approach would in this case incorrectly report some illegal placements as legal. 
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Figure 3   Memory Storage


In general, the problem is that the activities in a group may influence states and resources used by other activities in the group.  Thus, the straightforward approach of considering each activity independently and intersecting the legal times will produce incorrect results.
 


One possible approach would be to note that one could incrementally place individual activities in the grouping. Such an approach would place activities in forward temporal order (because only a previous activity could alter a state or resource for a subsequent activity).  Such an approach would place a1 at a legal time then determine legal placements for a2 and so on.  This approach has two problems.  First, to be complete one would need to attempt all legal placements for each of the preceding activities (i.e. one would have to iterate through all placements of a1 and for each such placement compute legal times for a2).  Second, we allow an action model where two activities may begin at the same start time where each causes a state or resource change that affects a reservation of the other activity.  Such activities must be considered simultaneously to determine valid placements.

The remainder of the paper we describe an approach to correctly computing the legal locations for a complex activity, empirically document the effectiveness of this technique, and discuss conclusions, related and future work.

3. Aggregate Search

Our aggregate search technique is based on the observation that interacting reservations impose different constraints on the state or resource than those imposed by individual reservations.  This new reservation may be more or less constraining, depending on the nature of the interaction.  Therefore, we first transform interacting reservations into non-interacting reservations that preserve the semantic content of the original set of reservations.  We then calculate valid intervals for the collection of activities by collecting valid intervals for the new non-interacting reservations and intersecting them.  This results in the solution to our problem:  “where can we move this collection of activities considering constraints on states and resources while maintaining the existing temporal relationships?”


We describe the processing of three types of constraints: 1) non-depleting resource; 2) depleting resource; and 3) symbolic state heretofore referred to as state.  A resource timeline represents a continuous resource with a minimum and maximum value.  Minimum and maximum values are part of the global reservations set.  The value of a reservation on a particular resource is applicable only during the temporal extent of that reservation.  In this sense, resource timelines represent the depletion and renewal (or renewal and depletion) of a shared resource at the start and end of each reservation constraining the shared resource represented by the timeline.  Clearly, purely depleting or renewing reservations are possible by setting the end-time of the reservation to the end of the planning horizon, End.  However, it is possible to implement depletable resources more efficiently – we describe such an implementation in this article.  A state timeline represents a symbolic state.  Global reservations on a particular state are the allowed transitions from one state to the next.  Both state and resource timelines are constrained by global reservations defining a single default value.  We will proceed by formalizing state and resource timelines, reservations, and violations of constraints heretofore referred to as conflicts.

Definitions

We assume the earliest and latest start- and end-times, Start and End, i.e. the planning horizon.  We assume that we are given the previously mentioned plan-state P and set of constraints.  We assume that we wish to compute times to move a collection of activities C that violate no timeline constraints, heretofore referred to as legal times.  We assume global set of activities A which contains C.  We select a reference activity a from C and compute possible start-times of a such that if all connected activities would move in unison (thus maintaining consistency among temporal constraints) reservations of activities in C would be consistent.  Because the relative positioning of all of the activities in C is being preserved, we ignore temporal constraints among the members of C.  We cannot ignore constraints from time-points of activities in C to either Start or End, but valid times are easily calculated by examining each constraint individually and translating the result by the difference between the start-time of a and the constrained time-point.  We do not concern ourselves with temporal constraints between activities in C and other activities in A‑C.  Thus, we must now concern ourselves only with timeline constraints.


A reservation is a 3-tuple <s, e, v> such that s is the start-time, e is the end-time, and v is the value.  For this discussion, v is an integer for resources and a symbol for states.


We use timelines to represent the values of variables over time.  So, each timeline consists of a series of values or timeline units.  Each timeline unit is a 3-tuple with same definition as a reservation for each type of timeline.  The set of timeline units U is a series of units that completely cover without overlapping the temporal extent of the entire timeline.


A resource timeline is a 4-tuple <min, max, U, R> where min is the minimum value of the variable at any point in time, max is the maximum value of the variable at any point in time, U is the set of timeline units used to describe the value of the variable over time, and R is the set of reservations whose constraints are already represented by U.  We calculate U based on R.  Each timeline unit u (U is the sum of the values of all r ( R such that u is contained temporally by r.


We describe two types of resource timelines: non-depletable and depletable.  The difference between the two is the temporal extent of reservations.  The temporal extent of a non-depletable reservation r = <s, e, v> is [s, e).  The temporal extent of a depletable reservation  r = <s, e, v> is [s, End). We differentiate between them because we can gain some efficiencies both in aggregating and calculating valid intervals for reservations based on knowledge about the temporal extent of a reservation.


A resource timeline is in conflict (at least one of the constraints on the shared resource represented by the timeline is violated) iff ( <s, e, v> ( U | v < min ( v > max. 


A state timeline is a 5-tuple <transitions, U, Rchangers, Rusers, d> where transitions is a set of 2-tuples of symbols representing allowable transitions from one state to the next, U is the set of timeline units used to describe the value of the variable over time, Rchangers is the set of reservations whose constraints are already represented by U, Rusers is the set of constraints on the validity of values represented by U, and d is the default symbol for the timeline if no changer reservation defines the value of a timeline unit.  We also reserve the symbol ( for the conflicting assignment of a timeline unit (e.g. two changers at the same time change a unit to two different values).  We calculate U based on Rchangers.  If no changer in Rchangers begins at the start of the timeline, then the earliest timeline unit in U is assigned a value of d, otherwise it is handled as a subsequent timeline unit.  Each subsequent timeline unit u = <su, eu, vu> ( U contains at least one changer c = <sc, ec, vc> ( Rchangers such that su = sc.  If there exists another c' = <sc', ec', vc'> ( Rchangers such that su = sc' but vc ( vc', then vu is assigned (.  Otherwise, all vc, vc', etc. are the same, so vu is assigned vc.  There exists no changer c = <sc, ec, vc> ( Rchangers such that su < sc < eu.


Two types of conflicts are possible for state timelines: state-usage and state-transition conflicts.  A state timeline is in conflict if there exists either a state-usage or a state-transition conflict.  There exists a state-usage conflict iff ( <s, e, v> ( U | (( <su, eu, vu> ( Rusers  | (su ( s < eu ( su < e ( eu ) ( v ( vu ).  There exists a state-transition conflict iff ( <s, e, v> ( U | (( <s', e', v'> ( U | e = s' ( <v, v'> ( transitions). 


We define an activity a be a 3-tuple <s, e, R> such that s is the start-time of the activity, e is the end-time of the activity, and R is a set of 2-tuples | ( <T, r = <sr, er, vr> > ( R, (T ( Timelines) ( sr = s ( er = e.


At last, we can describe the transformation of interacting state and resource reservations into non-interacting reservations.  We start by gathering all reservations from all activities in C into a set Rm (reservations to be moved).  Since all temporal relationships are grounded and we wish to maintain these, we require a single time-point ( that is related to all time-points in C.  We are given a in C, so we will use the start-time of a for (.  Thus, our transformed problem is to find valid assignments for ( such that no new conflicts arise, assuming all reservations in Rm are moved maintaining their relationship to (.


We then partition reservations according to the type of timeline being constrained because interactions among reservations are limited to reservations on the same timeline.  Let Rp be the partition of Rm according to the timeline being constrained by any r in Rm .  An element (T, R) of the partition Rp is a timeline T and a set of reservations on that timeline R.  Note that valid assignments V for ( considering Rp can be calculated by finding valid assignments Vi for each (T, R)i ( Rp and intersecting them.  Therefore, our task is to find Vi for each (T, R)i ( Rp.


In the simplest case, either R in (T, R)i is empty or has only one reservation.  We need only calculate Vi as we had using the naïve calculation because no interactions are possible.

Interacting Non-Depletable Resource Reservations

For non-depletable timelines, only reservations that overlap temporally interact because the temporal extent of the effect of the reservation is exactly the temporal extent of the reservation.  Formally, r1 and r2 (R interact iff r1 ( r2, <s1, e1, v1> = r1, <s2, e2, v2> = r2, s1 ( s2 < e1 ( s1 < e2 ( e1.  Valid assignments for ( with respect to non-interacting r (R can be calculated directly using the naïve approach.  For interacting r (R, we calculate a new set of reservations R' that contains reservations that are temporally disjoint (and therefore non-interacting) but express the same constraints.  This requires at most 2n reservations where n = |R|.  


First, we assume R' = {<Start, End, 0>}.  To transform an interacting <s, e, v> ( R, we first split any reservation in R' that contains either s or e into two reservations i.e. 

if ( <s', e', v'> ( R' | s' < s < e' 

R' ( (R' - <s', e', v'>) ( {<s', s, v'>, <s, e', v'>}

endif

if ( <s', e', v'> ( R' | s' < e < e' 

R' ( (R' - <s', e', v'>) ( {<s', e, v'>, <e, e', v'>}

endif

Then, we update the values of all r'( R' contained by [s, e) by v.  This results in R' being a set of non-interacting reservations.  We simply calculate the valid assignments for ( for each r' ( R and intersect these with V.
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Figure 4    Transformed Non-depletable Resource Reservations

We describe a function that returns a set of valid assignments S given a timeline T and an individual non-depletable reservation r.  We assume S = (.

Valid-Non-Depletable-Intervals(r = <sr, er, vr>, T = <min, max, U, R >) returns a set S
1. lookingForStart ( TRUE 

2. foreach <su, eu, vu> ( U in ascending order by su
3.  
if min ( (vr + vu) ( max
4.  

if  lookingForStart 

5.  


st ( su 
6.  


lookingForStart ( FALSE 

7.  
else if (lookingForStart 

8.  

et ( su - (er - sr)

9.  

if st ( et
10.  


S ( S ( {<st, et>} 

11.  

lookingForStart ( TRUE 

12. return S
Interacting Depletable Resource Reservations

For depletable resource timelines, all reservations interact because the effect of a reservation compounds the effects of all previous and simultaneous reservations.  To calculate valid assignments for ( with respect to r (R, we calculate a new set of reservations R' that contains reservations that are non-interacting but express the same constraints.  This requires at most n reservations where n = |R|.  Obviously, R can only contain one depletable reservation and still remain temporally (and semantically) disjoint.  The basic idea is that we transform a collection of depletable reservations into a collection of non-interacting non-depletable reservations followed by a single depletable reservation.


The temporal extent of a depletable reservation r =  <s, e, v> is [s, End), thus implying that this reservation will affect all subsequent an simultaneous reservations.  For example, consider r1 = <s1, e1, v1> = <10, 40, 10> and r2 = <s2, e2, v2> = <20, 30, -9>.  If r2 is to be moved in conjunction with r1, the actual requirements on the timeline are that we require 10 from [s1, s2) and we require 1 from s2 onward.  Formally, {r1, r2} transforms to {r', r''}={<s1, s2, v1>, <s2, s2, v1 + v2>}, where r' is a non-depletable reservation and r'' is a depletable reservation. 


Generally, we transform all r (R as follows.  First, we assume R' = {<Start, Start, 0>}.  For each <s, e, v> ( R, we proceed thusly:

if ( <s', e', v'> ( R' | s' > s 

R' ( R'  ( {<s, s, v + v'>}

e' ( s
else if ( <s', e', v'> ( R' | s' = s 

v' ( v' + v
else // we know that there must ( <s', e', v'> ( R' | s' < s < e' 

R' ( (R' - <s', e', v'>) ( {<s', s, v'>, <s, e', v + v'>}
endif

Then, we update the values of all r'( R' contained by (s, End) by v, and continue for all r (R. This results in R' being a set of non-interacting reservations.  We simply calculate the valid assignments for ( for each r' ( R and intersect these with V.
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Figure 5    Transformed Depletable Resource Reservations

We describe a function that returns a set of valid assignments S given a timeline T and an individual depletable reservation r.  We assume S = (.

Valid-Depletable-Intervals(r = <sr, er, vr>, T = <min, max, U, R >) returns a set S
1. et ( End - (er - sr)

2. st ( End 

3. foreach <su, eu, vu> ( U in descending order by su
4.  
if min ( (vr + vu) ( max
5.  

st ( su
6.  
else break
7. if st ( et
8.  
S ( S ( {<st, et>} 

9. return S
Interacting State Reservations

For state timelines, many interactions are possible because state-changer reservations can affect the value of the timeline outside of their temporal extent.  First, we partition R into Lchangers and Lusers.  If Lchangers = ( we can naïvely calculate and intersect valid intervals on all ru in Lusers because state-user reservations only constrain the value of the timeline within their temporal extent.  Likewise, if no rc in Lchangers begin before the end of an ru in Lusers we can calculate and intersect valid intervals naïvely.  Thus, we assume that V represents the results of all non-interacting reservations, Lchangers ((, and all ru ( Lusers begin after or at the same time as the beginning of at least one rc ( Lchangers.  We proceed by generating a set R´ of non-interacting state reservations.  These will be neither changers nor users.  We assume that T = < transitions, U, Rchangers, Rusers, d >. 


We first consider interactions among rc ( Lchangers.  We assume no two changers share the same start-time.  This is valid because the effect of two (or more) different changer reservations starting at the same time but having the same value is exactly the same as a single changer reservation.  If two (or more) changers start at the same time but have different values, at least one timeline unit u ( T will have a value of (, meaning that the resultant set of intervals will be (.  We are guaranteed that Lchangers contains at least one reservation.


Let s and v be the start-time and value of the first changer in Lchangers , respectively.

R' ( R' ( {leading-changer <s, End, v>}

(End-times are not pertinent for changer reservations.)  A leading-changer rlc may be placed within the temporal extent of any timeline unit u ( T that contains rlc and for which there exists a <vu, vc> ( transitions where vu is the value of the unit and vc is the value of the changer rlc.


Let s and v be the start-time and value of the last changer in Lchangers , respectively.

R' ( R' ( {ending-changer <s, End, v>}

[image: image10.wmf]first

changer

a

leading-

changer

a

R

ending-

changer

b

last

changer

b

R'

...

An ending-changer r = <s, e, v> constrains T with respect to the nearest changer <sc, ec, vc> in Rchangers | s ( sc, if such a changer exists.  If s = sc, then vc must equal v.  Otherwise, <v, vc> must be in transitions.  r also constrains T with respect to all users <su, eu, vu> in Rusers whose temporal extent overlaps [s, sc).  Note: if no changer exists after or during s, then sc = End.  vu must equal v.

Figure 6    Leading- and Ending-Changer Reservations


If Lchangers contains two or more reservations, we must create reservations that represent the interactions between them.  We need only consider consecutive reservations because the effect of one state-changer reservation never extends past another (in time).  

foreach <s1, e1, v1> and <s2, e2, v2> ( Lchangers | no other reservation in Lchangers is contained in [s1, s2]

if  < v1, v2> ( transitions 

R' (R' ({no-changers-or-allow-first <s1+1, s2, v1>}

R' (R' ({no-changers-or-allow-last <s1+1, s2, v2>}

else

R'(R' ({need-a-changer-to-allow-first<s1+1, s2, v1>}

R'(R' ({need-a-changer-to-allow-last< s1+1, s2, v2>}
endif

R' ( R' ( {users-match-or-hidden <s1+1, s2, v1>}


endfor

A no-changers-or-allow-first <s, e, v> constrains T to either have no changers in Rchangers over [s, e) or for the first changer <s´, e´, v´> transitions contains <v, v´>.  A no-changers-or-allow-last reservation <s, e, v> constrains T to either have no changers in Rchangers over [s, e) or for the last changer <s´, e´, v´> transitions contains <v´, v>. A need-a-changer-to-allow-first <s, e, v> constrains T such that there exists at least one changer in Rchangers within [s, e) and for the first contained changer <s´, e´, v´>, transitions contains <v, v´>.  A need-a-changer-to-allow-last reservation <s, e, v> constrains T such that there exists at least one changer in Rchangers within [s, e) and for the last contained changer <s´, e´, v´>, transitions contains <v´, v>.  A users-match-or-hidden reservation r = <s, e, v> constrains T such that for the earliest reservation r' = <s', e', v'> (Rchangers ( Rusers | s ( s' < e, r' ( Rchangers ( v = v'.
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Figure 7    Allowed Changer to Changer Reservations
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Figure 8    Disallowed Changer to Changer Reservations

Valid-No-Changers-or-Allow-First-Intervals

(r = <sr, er, vr>, T = <transitions, U, Rchangers, Rusers, d>) returns a set S
1. foreach <su, eu, vu> ( U in ascending order by su
2.  
if (er - sr) + 2 < (eu - su) // no changers calculation

3.  

S ( S ( {<su+1, eu-(er - sr)-1>}

4.  
if ( <s', e', v'> ( U | s' > su ( ( <s'', e'', v''> ( U, s'' < s' ( s'' < su // next unit in U
5.  

if  <vr, v' > ( transitions // allow first calculation

6.  


S ( S ( {<max(su+1, eu-(er - sr)-1), eu>}

7. return S
Valid-No-Changers-or-Allow-Last-Intervals

(r = <sr, er, vr>, T = <transitions, U, Rchangers, Rusers, d>) returns a set S
1. foreach <su, eu, vu> ( U in ascending order by su
2.  
if (er - sr) + 2 < (eu - su) // no changers calculation

3.  

S ( S ( {<su+1, eu-(er - sr)-1>}

4.  
if  <vu, vr > ( transitions // allow last calculation

5.  

S ( S ( {<su + 1 - (er - sr), min(su, eu - (er - sr)-1)>}

6. return S
Valid-Need-a-Changer-to-Allow-First-Intervals

(r = <sr, er, vr>, T = <transitions, U, Rchangers, Rusers, d>) returns a set S
1. foreach <su, eu, vu> ( U in ascending order by su
2.  
if ( <s', e', v'> ( U | s' > su ( ( <s'', e'', v''> ( U, s'' < s' ( s'' < su // next unit in U
3.  

if  <vr, v' > ( transitions // allow first calculation

4.  


if (er - sr) < (eu - su)

5.  



S ( S ( {<eu-(er - sr), eu - 1>}

6.  


else 

7.  



S ( S ( {<su + 1, eu - 1>}

8. return S
Valid-Need-a-Changer-to-Allow-Last-Intervals

(r = <sr, er, vr>, T = <transitions, U, Rchangers, Rusers, d>) returns a set S
1. foreach <su, eu, vu> ( U in ascending order by su
2.  
if ( <s', e', v'> ( U | s' > su ( ( <s'', e'', v''> ( U, s'' < s' ( s'' < su // next unit in U
3.  

if  <v', vr > ( transitions // allow last calculation

4.  


if (er - sr) < (eu - su)

5.  



S ( S ( {<eu-(er - sr), eu - 1>}

6.  


else 

7.  



S ( S ( {<su + 1, eu - 1>}

8. return S
Valid-Users-Match-or-Hidden-Intervals

(r = <sr, er, vr>, T = <transitions, U, Rchangers, Rusers, d>) returns a set S
1.  S ( {<Start, End>}

2. foreach <su, eu, vu> ( U 

3.  
foreach <suser, euser, vuser> ( Rusers | su ( suser < se ( suser < su < euser // users of this unit

4.  

if  vuser ( vr 
5.  


S ( S - <max( suser - (er - sr), su), min(eu - 1, euser - 1)>

6. return S

Next, we consider interactions among ru in Lusers.  We assume that no two state-user reservations in Lusers overlap and have different values because this is impossible to solve and would result in no possible non-conflicting assignments for (.  

foreach <su, eu, vu> ( Lusers 

R' ( R' ( {no-changers-or-match <su, eu, vu>}

endfor

A no-changers-or-match reservation constrains T such that either no changers in Rchangers are contained by [su, eu) or for each contained changer <sc, ec, vc>, vc = vu.
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Figure 9    User Reservations

Valid-No-Changers-Or-Match-Intervals

(r = <sr, er, vr>, T = <transitions, U, Rchangers, Rusers, d>) returns a set S
1. S ( {<Start, End>}

2. foreach <su, eu, vu> ( U in ascending order by su
3.  
if  vu ( vr  

4.  

S ( S - <su - (er - sr) + 1, su>

5. return S

Finally, we consider interactions among changers and users.  We assume ( <s, e, v> ( Lusers, ( <s', e', v'> ( Lchangers, s ( s' < e ( v = v'.  Otherwise, there are no possible non-conflicting assignments for (.  

foreach ru = <su, eu, vu> in Lusers 

find the latest rc = <sc, ec, vc> ( Lchangers | sc ( su
if  (sc = su or sc = su +1) ( vc = vu

the reservation ru is satisfied by rc and we know (due to the semantics of previously described reservations) that any changers in Rchangers contained by [sc, su] also satisfies ru, therefore this interaction is satisfied.

    elseif  vc = vu

R'(R' ({no-changers-or-last-changer-match<sc+1,su -1,vu>}

else

R'(R' ({need-a-changer-to-match-last < sc+1, su, vu>}

endif

endfor

A no-changers-or-last-changer-match reservation r constrains T such that either no reservations in Rchangers are contained by the temporal extent of r or the last contained changer r' has a value equal to that of r.  A need-a-changer-to-match-last reservation r constrains T such that there exists at least one changer in Rchangers contained within the temporal extent of r and the last contained changer r' has a value equal to that of r.  So, for each user in Lusers we add at most two reservations to R´.
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Figure 10     Transformed State Reservations


Valid-No-Changers-Or-Last-Changer-Match-Intervals

(r = <sr, er, vr>, T = <transitions, U, Rchangers, Rusers, d>) returns a set S
1. S ( {<Start, End>}

2. foreach <su, eu, vu> ( U in ascending order by su
3.  
if  vu ( vr  

4.  

S ( S - <su - (er - sr), min(su, eu - (er - sr) -1)>

5. return S
Valid-Need-a-Changer-to-Match-Last-Intervals

(r = <sr, er, vr>, T = <transitions, U, Rchangers, Rusers, d>) returns a set S
1. foreach <su, eu, vu> ( U in ascending order by su
2.  
if  vu = vr  

3.  

S ( S + {<su - (er - sr), min(su, eu - (er - sr) )>}

4. return S

It can be shown that valid intervals for each type of reservation described herein can be computed in time that is proportional to the number of reservations on the timeline (space constraints preclude description here).  Also, faster schemes in terms of average complexity using already calculated intervals to reduce the computation of intervals are possible, but scoring all intervals for fewest conflicts would require a complete intersection of all valid intervals for all reservations.


This completes our transformation from interacting reservations to non-interacting reservations.  We now give a brief analysis of the complexity of the technique.  Let nfixed be the number of reservations constraining all timelines.  Let nmove be the number of reservations in the collection to be “moved.”  If we assume that valid intervals can be computed for a single reservation in time that is proportional to the number of reservations on any timeline, then this algorithm is at worst O(nfixed nmove). If we consider the total number of reservations in the problem to be n =nfixed + nmove, then the complexity of this algorithm is at worst O(n2).  This is true because the transformation from interacting to non-interacting reservations adds at most a constant factor more reservations.  This transformation might in fact reduce the number of reservations, depending on the nature of the interaction.  It should be noted that in practice nfixed is much larger than nmove.

4.  Empirical Evaluation 

We now describe an empirical comparison of the aggregate search technique to the naïve approach for determining valid placements for activity groups.  In this comparison we examine the number of iterations and time to place the activity group in a conflict free fashion and the total number of problems solved for each domain.  If superior, the aggregate search algorithm should result in better solutions (placements with fewer conflicts), in faster reduction of conflicts, and more problems being completely solved. 


In our empirical analysis we use five models (and corresponding problem set generators): 1) the VTLI (valid timeline intervals) domain— a synthetic model designed to have inter-activity interactions, 2) the EO1 spacecraft operations domain, 3) the Rocky-7 Mars rover operations domain, 4) the DATA-CHASER shuttle payload operations domain, and 5) the New Millennium Deep Space Four landed operations domain.


Within each model and corresponding problem set, we generate random problems that include a background set of fixed activities and a number of movable activity groups.  The activity groups are placed randomly. The goal is to minimize the number of conflicts in the schedule by performing planning and scheduling operations.


To solve each problem, we use the ASPEN (Automated Scheduling and Planning Environment) system using an “iterative repair” algorithm, which classifies conflicts and attacks them each individually [4]. Conflicts occur when a plan constraint has been violated; this constraint could be temporal or involve a resource or state timeline. Conflicts are resolved by performing one or more schedule modifications such as moving, adding, or deleting activities. The iterative repair algorithm continues until no conflicts remain in the schedule, or a timeout has expired.


The scheduler entertains minimally conflicting placements when moving activity groups. In the control trials the scheduler does so using the naïve algorithm for computing valid placements.  In the experiment trials the scheduler is using the aggregate search method to compute valid placements.  In all cases for each domain, both trials are using the same set of heuristics at all other choice-points (e.g., selection of a conflict or activity group to attempt to repair, where to place within computed valid intervals, etc.).  Note that simple (non-aggregate) operations are available in both real domains, although they are of limited comparative utility.  Using only non-aggregate operations, the problems are intractable within reasonable time bounds because the distance in terms of sub-optimal moves from one local optima to the next is O(n) and the space to be searched is O(mn) where n is the number of activities in a movable collection and m is the number of possible locations given by a naïve calculation of legal intervals for an individual activity, e.g. in the EO1 domain, n ranges from 23 to 56; in the Rover domain, n ranges from 8 to 17.


We now briefly describe each domain including information on the types of activities and resources modeled, what the activity groups are, and how they are interdependent. 

VTLI Domain 


The VTLI domain consists of a color state variable and a charge resource.  Color may be red, purple, or blue, and allows any transition except red-to-blue and blue-to-red.  Charge is allowed to be an integer between 0 and 25, defaulting to 0. There are two types of activity groups for aggregation: color and charge.  Each group consists of four activities: a color-activity may be either a user-of or changer-to any of the allowed colors; a charge-activity may use from ‑22 to 22 of charge. Because members of the same activity group all use the same timeline, there will be many intra-group interactions. For example, one member may change the color to red while a later member needs purple. This requires placing the pair with a transition to purple between them. Charge members may overlap, hence reserving the sum of their values during the overlapping period.


A VTLI problem instance includes random, fixed profiles for the timelines. Each timeline has 60 fixed reservations with values chosen from red, purple, or blue for color and from integers between 0 and 24 for charge. The values are chosen randomly, but without introducing inconsistencies with the model (e.g., illegal transitions). Each problem also includes ten movable groups of four activities with equal chance of each group being a color or charge group. We preclude intra-group reservations which are contradictory (e.g., overlapping members requiring different color states) but inter-group interactions may make problems unsolvable for a given fixed profile.  The groups are initially placed at random times within the planning horizon.

EO1 Domain


The EO1 domain models the operations of the New Millennium Earth Observer 1 operations for a two-day horizon [9].  It consists of 14 resources, 10 state variables and total of 38 different activity types. Several activity groups correspond to activities necessary to perform different types of instrument observations and calibrations. The activity groups range in size from 23 to 56 activities, many of which have interactions. For example, taking an image of the earth requires fixing the solar array drive to avoid blurred images. The high-level observation activity group includes both commands to fix the SAD and take the image.


Each EO1 problem instance includes a randomly generated, fixed profile that represents typical weather and instrument pattern. Each problem also includes 8 randomly placed instrument requests for observations and calibrations.

Rocky-7 Domain


The Rocky-7 Mars rover domain models operations of a prototype rover for a typical Martian day [8].  It consists of 14 shared resources, 7 state variables and 25 activity types.  Resources and states include cameras (front, rear, mast), mast, shovel, spectrometer, solar array, battery, and RAM. There are four activity groups that correspond to different types of science experiments: imaging a target, digging at a location, collecting a spectrometer reading from target, and taking a panoramic image from a location. Activity group size ranges from 8 to 17 activities. Members in activity groups have positive resource interactions, e.g. opening the aperture for the camera enables subsequently taking a picture.  Activity groups also have negative interactions, e.g. several member activities using the onboard buffer. Rover problems are constructed by generating four experiments and randomly generating parameters for the experiments (such as target locations).

New Millennium Deep Space Four Landed Operations Domain

The DS4 domain models the landed operations of a spacecraft designed to land on a comet and return a sample to earth. This model has 6 shared resources, 6 state variables, and 22 activity types.  Resources and states include battery level, bus power, communications, orbiter-in-view, drill location, drill state, oven states for a primary and backup oven state, camera state, and RAM.  There are two activity groups that correspond to different types of experiments: 1) mining and analyzing a sample, 2) taking a picture.  Activity group sizes range from 5 to 10.  As in the rover domain, activities interact positively and negatively.  


Each DS4 problem instance includes a randomly generated, fixed profile that represents communications visibility to the orbiting spacecraft.  Each problem also includes five mining and two picture experiments (each randomly placed.)

DATA-CHASER Domain

The DCAPS domain models operations of a shuttle science payload that flew onboard Space Shuttle Flight STS-85 in August, 1997.  It consists of 19 shared resources, 25 state variables, and 70 activity types.  Resources and states include shuttle orientation, contamination state, 3 scientific instruments (doors, relays, heaters, etc.), several RAM buffers, tape storage, power (for all instruments/devices), and downlink availability.  There is one type of activity group corresponding to one experiment for each of the 3 scientific instruments.  This activity group consists of 23  activities.  As with the other domains, activities in this activity group interact positively and negatively.


Each DCAPS problem instance includes a randomly generated, fixed profile that represents shuttle orientation and contamination state.  The number of randomly placed experiments ranges from 2 to 20 based on the fixed profile for the given problem instance.

Discussion of the Empirical Results


We generate twenty random problems for each domain and run ASPEN with twenty different random seeds for each combination of problem and technique.  Note that we do not guarantee that the problems are solvable.


We evaluate the performance of our technique versus the performance of the naïve technique in terms of the number of iterations to solve conflicts, amount of time to solve conflicts, and the total number of problems solved for each domain.  


For the VTLI domain, our aggregate technique is slightly slower than the naïve technique per iteration, but performs better than the naïve technique in terms of the number of conflicts solved.  This slowdown is expected in that aggregation of interacting state reservations leads to a constant factor more non-interacting reservations.


For the EO1 operations domain, the naïve technique and aggregate technique perform similarly at first.  This is because a number of the conflicts do not involve interacting reservations and hence the naïve technique can solve them.  However, many of the conflicts involve interacting reservations.  Because the aggregate techniques correctly handle these interactions, it is able to solve these conflicts.  Thus in the longer term the aggregate is able to solve more conflicts in the schedule.  


For the Rocky-7 Mars rover operations domain, the aggregate technique appears to strictly dominate the naïve technique.  Interestingly, conflict count rises before it falls for both algorithms.  This is due to the added planning necessary to solve conflicts.  Adding activities leads to more conflicts initially, but eventually leads to solutions.  


For the New Millennium DS4 Landed Operations domain, the aggregate technique strictly outperforms the naïve technique.  Conflict count rises before it falls as in the rover domain and for the same reason, except the algorithm employing the naïve technique never recovers.  Many of the activities in a group interact, therefore the naïve technique often makes mistakes in recommending placements for activity groups.  Because of this faulty advice, repair using the naïve approach actually increases the number of conflicts in the schedule.


For the DCAPS domain, the aggregate technique strictly outperforms the naïve technique.  In this domain, almost all of the activities in a group interact, leading to similar consequences as the DS4 domain.
In terms of number of problems solved, we observe that the aggregate search technique is able to completely solve (i.e., remove all conflicts) more problems than the naïve approach in all five domains.


VTLI
EO1
Rover
DCAPS
DS4
total

aggregate
84/400
149/400
390/400
387/400
243/400
1253/2000

naïve
4/400
60/400
243/400
1/400
0/400
308/2000

Table 1    Problems Solved


[image: image2.png]Conflicts

ASPEN Repair for VTLI

aggregate ——
naive ——
atomic -=—-

02 04 06 08 1 12 14 16
CPU Time (sec)




[image: image3.png]Conflicts

30

ASPEN Repair for Rover

aggregate ——

2 4 6 8 10 12 14 16

CPU Time (sec)



[image: image4.png]Conflicts

ASPEN Repair for EO1
20 ‘

aggregate ——

0 05 1 1.5 2
CPU Time (sec)



[image: image5.png]Conflicts

25

ASPEN Repair for DS4

aggregate ——

2 4 6 8 10

CPU Time (sec)




[image: image6.png]Conflicts

ASPEN Repair for DCAPS

aggregate —— |

CPU Time (sec)




Figure 11    Performance

These empirical results imply that aggregate reasoning is effective in synthetic and real domains, both in terms of number of constraint violations repaired and in terms of overall time to reach a desired solution quality.  We have computed the statistical confidence that the average final number of conflicts using the aggregate search method is less than the final number of conflicts using the naïve method.  For the VTLI, EO1, DS4, and DCAPS domains, this confidence is greater than 99.9%.  For the Rover domain, this confidence is greater than 98%.

4.  Discussion and Conclusions

There are a number of related systems that perform both planning and scheduling.  IxTeT uses least-commitment approach to sharable resources [5] that does not fix timepoints for its resource and state usages.  HSTS [7] enforces a total order on (state and resource) timelines but the start and endpoints of tokens are only constrained temporally by an interval.  In both cases these are less committed representations than our grounded time representation but this flexibility incurs a greater computational expense to detect and/or resolve conflicts.  O-PLAN [1] also deals with state and resource constraints.  O-PLAN’s resource reasoning [10] uses optimistic and pessimistic resource bounds to efficiently guide its resource analysis when times are not yet grounded.  Like ASPEN, O-PLAN also allows multiple constraint managers which would enable it to perform general reasoning when times are unconstrained and more efficient reasoning in the case where all timepoints are grounded (also enabling aggregate search as described in this paper).  SIPE-2 [11] handles depletable/non-depletable resource and state constraints as planning variables using constraint posting and reasons at the same level of commitment as IxTeT.    Cesta, Oddi and Smith [2] apply constraint-posting techniques to satisfy multi-capacitated resource problems at the same level of commitment.  Depletable/non-depletable resource constraints are easily transformed to multi-capacitated resource constraints.  None of these systems generally consider aggregate operations in their search space.


This paper has described the use of aggregation techniques to improve the efficiency of scheduling sets of interdependent activities.  We describe our algorithm for processing interacting state and resource requirements of a cluster of interdependent activities into a set of independent requirements and using these to search for placements for the activity set.  We show empirically that our aggregation search method outperforms the alternative approach of searching for legal placements on both synthetic problems and problems from planetary rover and spacecraft operations domains.
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� Note that this technique will be useful for consideration of moving/placing any abstract organization of activities, e.g. hierarchies of tasks or decompositions, etc. There is significant evidence that these organizations of activities commonly occur in application domains  [3].





� Note that this incorrectness applies also to computing the number of conflicts for moving a set of activities.  In the same two cases listed the number of conflicts resulting from moving C would be either under or over-estimated.
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