

Heuristic Onboard Pointing Re-scheduling
for an Earth Observing Spacecraft

Steve Chien, Martina Troesch,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
steve.chien@jpl.nasa.gov

Abstract
Prior space missions have not routinely used onboard
decision-making. The Autonomous Sciencecraft (ASE),
flying onboard the Earth Observing One spacecraft, has
been flying autonomous agent software for the last decade
that enables it to analyze acquired imagery on board and use
that analysis to determine future imaging. However ASE
takes approximately one hour to analyze and respond.
This paper describes a scheduling prototype for the Earth
Observing Autonomy (EOA) project to increase the
responsiveness of spacecraft flight software for onboard
decision-making as well as to increase the capabilities of
flight software. Specifically, we target onboard image
analysis and response within a single orbital overflight at
low Earth orbit (about eight minutes). We focus on the re-
scheduling of the future image acquisitions in the context of
an existing set of requests along with new requests based on
onboard analysis of just acquired imagery. We describe a
greedy, constructive, scheduler with O(n2) performance and
present preliminary results on its performance.

 Introduction
The Earth Observing Autonomy (EOA) project targets the
development of a spacecraft autonomy capability to enable
a wide range of Earth Observing, pointing spacecraft (e.g.,
Earth Observing One [Ungar et al. 2003], The Spot
constellation [Wikipedia Spot 2015], Orbview Class
spacecraft (such as Worldview-3) [Ball, 2015, Wikipedia
Worldview-3 2015] to image, analyze the image, and re-
image based on that analysis within a single overflight,
imposing a responsiveness constraint of 5-8 minutes. This
would represent a dramatic improvement over the current
state of the art, ASE [Chien et al. 2005], which responds
within roughly 1 hour.
 We describe a software prototype of the EOA capability
that includes several autonomy components:
1. Onboard science processing algorithms. Science

analysis algorithms process onboard image data to

Copyright © 2015, California Institute of Technology. All rights reserved.

detect science events and suggest reactions to
maximize science return. Specifically we investigate
the use of the Mixture –tuned Match Filter (MTMF)
[Boardman and Kruse 2011] for onboard spectral
analysis of acquired imagery. However ASE has
already demonstrated the utility of thermal analysis for
volcanoes and wildfires [Davies et al. 2006], spectral
analysis for flooding [Ip et al. 2006], spectral analysis
for cryosphere study [Doggett et al. 2006], as well as
spectral unmixing for mineralogical analysis
[Thompson et al. 2012].

2. Onboard planning and scheduling software. The
Continuous Activity Scheduling Planning Execution
and Replanning (CASPER) [Chien et al. 2000]
combined with the Eagle Eye Mission Planning
Software [Knight et al. 2013] system generates a
baseline mission operations plans from observation
requests. This baseline plan is subject to considerable
modification onboard in response to data analysis from
step 1. The model-based planning algorithms enable
rapid response to a wide range of operations scenarios
based on models of spacecraft constraints. However,
in this paper we focus on a greedy, constructive, non-
backtracking scheduler designed specifically for this
application.

3. Robust execution software. The JPL core flight
software [Weiss 2013] (CFS) expands the CASPER
mission plans to low-level spacecraft commands and
includes a powerful and expressive sequencing engine.
The CFS sequencing engine monitors the execution of
the plan and has the flexibility and knowledge to
perform improvements in execution as well as
procedural responses to execution anomalies.

One challenge to spacecraft autonomy is limited computing
resources. An average spacecraft CPU offers 200 MIPS
and 128 MB RAM – far less than a typical laptop
computer. For the EOA prototype, we baseline a Rad 750
or Leon processor for all of the autonomy capability.

9

 EOA demonstrates an integrated autonomous mission
response capability using onboard science analysis,
replanning, and robust execution. EOA performs intelligent
science data analysis, and spacecraft retargeting. This
capability can reduce data downlinked in cases where
onboard analysis determines the data not of interest (e.g.
search for active volcanos and return only images that
contain active volcanos). This capability can also enable
an increase in science return. In many cases, a mission is
not limited by observation time, but rather by downlink
volume. In these cases, if the spacecraft can acquire
imagery searching for a specific signature and not return
the data if the signatures not found, then search can be
made much more efficient. Specifically, the spacecraft can
search for active volcanoes a large amount of the time, and
only pay the downlink cost proportional to the number of
images with active volcanoes rather than the total number
of images acquired searching for active volcanoes. In
cases where phenomena may be short-lived, onboard
detection may enable additional data to be acquired,
gathering more science data on the scarce phenomena (e.g.
when detecting an active volcano, add requests to image it
more frequently and in greater detail).
 The execution flow of the EOA software is shown in
Figure 1. As the spacecraft overflys targets, it images
them. As the imagery is acquired, it is processed onboard
the spacecraft. Based on the operations policies of the
missions, this analysis may result in new image requests.
These image requests are folded into the prior image
requests and a new schedule is constructed that may
acquire the new image and may change other images
acquired (such as pre-empting a less valuable target).
Spacecraft execution then continues.

These capabilities enable radically different missions with
significant onboard decision-making allowing new ways to
conduct science from space. The paradigm shift toward
highly autonomous spacecraft will enable future space

missions to achieve significantly greater science returns
with reduced risk and reduced operations cost.
In this paper, as the meeting topic is planning and
scheduling, we focus on the rescheduling portion of the
overall responsiveness of the mission. We begin by
describing the overall on board response scenario to show
the overall mission timeline and the context of
rescheduling.

Autonomous Science Scenario
Our onboard planning capability is designed to support an
EOA mission scenario. While the EOA software is
designed to support a wide range of spacecraft without any
modification, in this section, we describe a scenario with a
Worldview-3 like spacecraft [Ball 2015, Wikipedia 2015]
to image science targets, process and analyze onboard
image data, and re-plan operations based on science
results.
 For this demonstration we assume several baseline
mission parameters.

Parameter Value
Orbit 950 km Sun synchonous
Initial Science Images 30-40° lookahead from nadir
Response image Nadir to 20° lookahead
Spacecraft slew rate 4.5° per second, instantaneous

start and stop, no settle time
Imaging time Dwell of 1s per image
Image request granule
"footprint"

0.5 km along track x 4 km
across track

In Figure 1 we highlight some of the geometry
characteristics of the EOA scenario. As the spacecraft
orbits the earth, it has several viewing windows. The first
viewing window is the initial science image window which
covers from 31 to 38° in front of the spacecraft. The
second viewing window is the response image which
covers from 0° lookahead (nadir) to 28° lookahead. As the
spacecraft flies over the earth it is imaging in large number
of locations in the initial science window. As it acquires
this imagery, software analyzes the imagery onboard the
spacecraft. This analysis indicates the possible need to
take follow-up imagery (in the response imaging window).
For example, in the initial science window we might search
for the thermal signature of a volcanic eruption or wildfire.
In the response window we might further image to
precisely determine the extent of the lava flow and the
exact temperature map of the flow.
The goal of the scheduler is to accommodate as many of
the initial science and response imaging requests but is
guided by the priority of the requests and restricted by the
pointing and slewing capabilities of the spacecraft (as well

10

as any other operations constraints). As shown in Figure 2,
from a side view, the speacecraft must slew forwards and
backwards looking a variable amount ahead to view the
image targets. At the same time, the spacecraft is moving
forwards due to orbital motion (at approximately 7.5km
per second). Because processing the images requires some
time, the initial search window is significantly ahead of the
response window. This enables initial search-ed images to
be processed/analyzed in time to allow for scheduling of
followup imagery in the response window. The response
window does not extend behind the spacecraft in order to
maintain consistent lighting conditions.
 This slewing forwards and backwards along the
spacecraft motion track is complicated by two things.
First, the angle at which the spacecraft must look forward
to view the target is a non linear function of when the
spacecraft wishes to view the target. Specifically, at nadir,
for the Earth, in a 950km orbit, 1 degree of lookahead
corresponds to 16.6 km ahead of nadir in the ground track.
However, at 37° of lookahead, 1° of further lookahead
(e.g. to 38° lookahead) corresponds to 30.7 km ahead in
the ground track. The second issue is that typically the
slew rate of the spacecraft is not linear, there is a ramp up
acceleration of the spacecraft to some maximum slew rate,
a portion of the slew at the maximum rate, then a ramp
down as the spacecraft arrives at the desired position.
 Figure 2, Case 1 shows these two factors from the
spacecraft pointing perspective. In this example the
spacecraft is looking ahead and wants to view a target
further ahead beyond the current look angle. The spaceraft
could simply wait until the target comes into view, or it
can slew ahead to meet the target. The blue line shows the
track of a fixed point on the ground in terms of the look
angle from the spacecraft as the spacecraft approaches the
point. This line indicates that at time 0 the target is at 42°
lookahead. The red line shows the angular position of the
spacecraft reachable from the starting point of nadir as a
function of time. The intersection of these two lines shows
the earliest possible time that the spacecraft can view the
target. The graph indicates that if the spacecraft begins
slewing it will be able to reach the target but that the target
will be at 38° lookahead when it is reached. In this case

the motion of the spacecraft is helping us to meet the target
earlier.
 The right side of Figure 2 shows a different case, Case 2.
In Case 2, the spacecraft is pointing at 38° lookahead, and

wants to next view a target currently at 20° lookahead. In
this case the spacecraft motion is carrying the target
(relative to the spacecraft) away from the current
spacecraft pointing and the slew must catch up. The graph
shows that the by the time that the spacecraft can view the
target it will be at 17° lookahead.
 Figure 4 is a view from above the spacecraft looking
down on the Earth. As the spacecraft moves along track
(from left to right in Figure 4), the spacecraft must also
slew across track (up and down in the Figure) as well as
forwards and backwards along the ground track (left and
right in the Figure) to image targets.

This scheduling problem is a challenging one for several
reasons.

11

1. The spacecraft has limited ability to slew from
one target to the next (e.g. each slew takes up
valuable time).

2. Targets are distributed across the ground track of
the spacecraft so that the amount of time required
to image a target depends on the preceding and
following (temporally) targets in the schedule.

3. Because the initial viewing and response doing
windows are separated angularly, slewing back
and forth between these windows can be wasteful
of time.

4. Image analysis takes time. During this time
spacecraft is moving towards the target(s). This is
the reason why the initial image analysis and
response image analysis windows are not
overlapping, to allow the onboard software time
to analyze the images.

5. Generating the schedule also takes time (the focus
of this paper).

6. When calculating a start time to schedule an
observation of a target, the spacecraft intercepts
the target. The spacecraft must slew to a given
position (of the target), reaching that position at
the exact time that the target is in that position
relative to the spacecraft. This requires an
accurate model of the spacecraft slew time as well
as the ability to project where relative to the
spacecraft any target will be at any point in time.

7. In addition to pointing, the scheduler must
consider other resources such as power, thermal,
data volume (e.g. [Chien et al. 2010, Chien et al.
2012]). However in this paper we focus on the
pointing and slewing aspect of the problem as the
state and resource management aspect of the
problem has been considered elsewhere.

In order to simplify the scheduling problem we first
transform the image request locations from a <latitude,
longitude, altitude> coordinate frame of reference to an
<along track, across track> frame of reference (in this
process using a model of the spacecraft orbit). From this
<along the track, across track frame of reference>,
combined with the spacecraft orbit, the set of valid times to
view any target in the initial viewing window or response
window is easily computed.

R = {r1,…rn} sorted from highest priority to lowest priority

achieved_requests = {}
best_solution = nil
for adding_request ∈{r1…ra}
 call schedule(achieved_requests ∪ {adding_request});
 if success then
 achieved_requests ← achieved_requests ∪ {adding_request}

 best_solution ← solution returned by schedule

Schedule(request_set = {r1…ra})
Sort request set by earliest start time
 (e.g. request with earliest start time is first in set)
current_solution = {}
for current_request ∈{r1…ra}
 attempt to add current_request to current_solution
 by scheduling it at the earliest possible time that
 it will fit into the schedule
 if cannot add return FAIL
 else (success} continue
return current_solution

This scheduling algorithm represents a greedy outer loop
where we try to add requests in priority order. The inner
loop is given a set of requests, and attempts to schedule
them sweeping forward in time considering earliest
possible start time requests first.
 Figure 5 shows the inner loop of the scheduler. In figure
5a the two headed arrows indicate the earliest and latest
possible times each image can be acquired. The longer
intervals are response images and the shorter intervals are
initial search requests. In Figure 5a the requests are sorted
by earliest possible start time. Figure 5b shows the
requests being scheduled. The software tries to add each
request in the earliest start time sorted order, adding the
request to the schedule as early as possible. The orange
blocks indicate the slew time and the blue blocks indicate
the imaging time. The imaging time is roughly constant
but the slewing time is higher if the preceding image was
of a different type (initial, response), this is because the
spacecraft is generally slewing a greater distance (up to 0°
! 38° lookahead) as opposed to from one initial search to
another (maximum slew from 31° ! 38°) or from one
response to another (from 0° ! 28°).

12

As the inner loop of the scheduler is attempting to insert
the next request, it must repeatedly solve the problem of
slewing forwards and backwards along track to view
targets either ahead of or behind the current position. The
scheduler solves this problem of the intersection of the
earliest possible slew position curve intersecting the target
position angle relative to the spacecraft using Newtons
Method [Wikipedia Newtons 2015]. In computing this
observation time the software must take the latest of: the
spacecraft along track slew intersecting the target, the
mission mode constraints (e.g. initial search allowed look
angles, response image allowed look angles), as well as the
across track slew time to view the target. Solving for the
across track slew time is simpler than the along track
problem – while the earths curvature does make the
angular position a nonlinear function of the ground
distance, there is no across track motion to compensate for
and indeed this conversion from ground distance to angular
distance can be pre-processed. In practice for our scenario
slew times can range from a fraction of a second (for
adjacent tiles) to 5-10 seconds.
 While we currently use a simple constant slew rate
model for our current prototype, a more realistic model
would have:

1. an acceleration/decceleration profile,
2. a maximum rate,
3. a different model for different axes of the

spacecraft,
4. a settling time for the spacecraft to stabilize after a

slew in which the settling time depends on the
parameters of the image being acquired as well as
the velocity and acceleration profile of the slew

In our software architecture we treat the slew computation
as a black box so that we can easily insert a high(er)
fidelity model.

Estimated computational complexity of the
scheduling algorithm

Our analysis of the above observation scheduling
algorithm indicates several factors in its computational
complexity.
 Since we schedule from scratch each iteration we will
always make R passes through the outer loop where R is
the number of scheduling requests.
 Each of the R passes through the outer loop makes a
single call to the “schedule” function. The schedule
function performs a computation to attempt to add a slew
and image to the schedule each iteration. This effort to add
a slew and image requires computation in worst case on the

order of the number of items currently in the schedule.
While the number of items currently in the schedule is
certainly no worse than R above (total number of requests)
if the number of requests that can actually fit into the
schedule Smax is much smaller than R this will be a much
lower bound.
 For example, if the entire search window corresponds to
200s of observation time, and the minimum observation
length is 2s Smax < 100 so if R is >> 100 it does not matter,
the complexity is of order Smax. So overall the
computational complexity of the scheduler is RSmaxC
where R is the total number of requests and Smax is the
number of requests that will actually fit in the schedule and
C is the computation required to evaluate the feasibility of
inserting a single request into the schedule.
 Note that this algorithm does not take advantage of the
fact that the set of changes to the request set is small
compared to the size of the request set. An obvious
optimization would be to only reschedule the portion of the
schedule of lesser priority than the highest priority new
request.

Empirical evaluation of the scheduling
algorithm
In order to verify our analysis of the computational
complexity of the algorithm, we also performed a limited
empirical analysis of the algorithm. For this analysis we
generated a synthetic data set using the following
parameters.

Parameter Value
Initial request probability 1-5%

Probability of a response image
given a search request performed

25, 50, 75%

 Scheduling horizon 45° lookahead

Figure 6: Preliminary run information

The empirical data is shown at the end of the paper.
Graphs 1 and 2 show that the scheduler can only
completely achieve a relatively small percentage of initial
search requests (a few percent). Already if 2% of all
possible tiles are requested for search with no responses
many of the search requests are not being satisfied.
 When response requests are included this further drives
down the percentage of search requests that can be
scheduled because response requests are higher priority
and they preclude search requests. Graphs 3 and 4 show
that as response images are added to the scheduling
problem (at higher priority than search requests) the
scheduler is able to accommodate fewer search requests.
Graph 3 shows where 25% of searches yield a response

13

and Graph 4 shows where 75% of searches yield a
response.
 Graphs 5 and 6 show the CPU time required for the
scheduler in VxSIM. The run-time data indicates that the
scheduler is extremely fast, taking only a fraction of a
second in the software simulation. While the flight
processor is expected to be significantly slower, the
scheduling algorithm is not optimized in any way. One
obvious optimization is that the scheduler is solving the
problem from scratch each invocation when the majority of
the inputs have not changed. Clearly an incremental
rescheduler offers great potential for efficiency gains.

Discussion

The Autonomous Sciencecraft (ASE) has been flying the
CASPER continuous planner on board the Earth Observing
One (EO-1)spacecraft for the past decade. However, the
response time for CASPER on EO-1 is tens of minutes-in
part due to the meager computation on board the
spacecraft: 3 MIPS and no floating point computation in
hardware for the RAD 3000 CPU on board. Additionally,
the planning problem for EO-1 does not involve significant
geometric issues. The spacecraft generally only images
using its push broom imager and a fixed angle relative to
nadir, therefore there is no flexibility in the imaging time
for any target. The problem is rather one of which
combination of images should be acquired. The same issue
of computing which combination of images and slews is
feasible is challenging (and solved on the ground). The
EO-1 pointing problem is complex because EO-1 only has
three reaction wheels, therefore as further observations are
required momentum builds up on the reaction wheels that
restricts later pointings of the spacecraft due to maximum
rates that the reaction wheels can achieve. While this
momentum can be relieved using a magnetic torque bar,
this is a very slow process so observations are quite
constrained by builtup angular momentum (for further
details see [Chien et al. 2010]).

The CLASP [Rabideau et al. 2010, Doubleday et al,
2014] and Eagle eye [Knight et al. 2013] planners solve
geometric coverage planning problems from a ground
context. These systems can incorporate more complex
geometric constraints but also have better computational
resources and less time constraints.

AEOS [LeMaitre et al. 2002] is another project to
perform automatic observation planning on the ground.
AEOS solves a much more complicated and expressive
problem in which the spacecraft slews while imaging to
cover target polygons and the direction of the slew can be
optimized to cover the polygon as efficiently as possible.
In contrast we assume a framing imager and that the
alignment of the imager is in a fixed aspect ratio with
respect to a long track and across track to simplify the
problem. We do this because our onboard computation

capabilities are necessarily limited and also our response
time for the scheduler correspondingly constrained.
 In the future we plan on further maturing this work,
refining the scheduling algorithms as well as bringing the
work into a relevant hardware testbed.

Summary
We describe an overall software architecture for onboard
imaging, image analysis, operations scheduling, and re-
imaging within a realistic flight software operating system
and flight hardware performance environment. This
prototype demonstrated the feasibility of performing such
functions autonomously within a low earth-orbiting
environment (roughly 5-8 minutes overflight time). Future
efforts will further mature this concept and software by
bringing the prototype into a relevant flight hardware
testbed.

Acknowledgements
Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

References
Ball Aerospace, The WorldView spacecraft series,
http://www.ballaerospace.com/page.jsp?page=294,
retrieved 18 Feb 2015.
 J.W.Boardman and F.A.Kruse,“Analysis of imaging
spectrometer data using N-dimensional geometry and a
mixture-tuned matched filtering (MTMF) approach,”
TGARS, vol. 49, no. 11, pp. 4138–4152, 2011.
 DigitalGlobe, Worldview-3: DigitalGlobe,
http://worldview3.digitalglobe.com, retrieved 18 Feb 2015.
 S. Chien; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau,
G.; Castano, R.; Davies, A.; Mandl, D.; Frye, S.; Trout, B.;
Shulman, S.; Boyer, D. 2005. Using Autonomy Flight
Software to Improve Science Return on Earth Observing
One. Journal of Aerospace Computing, Information, and
Communication 2(4): 191–216.
 S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, "Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling," Proceedings
of the 5th International Conference on Artificial
Intelligence Planning and Scheduling, Breckenridge, CO,
April 2000.
 S. Chien, D. Tran, G. Rabideau, S. Schaffer, D. Mandl,
S Frye, “Timeline-based Space Operations Scheduling
with External Constraints, “ International Conference on
Automated Planning and Scheduling, Toronto, Canada,
May 2010.

14

 S. Chien, M. Johnston, N. Policella, J. Frank, C. Lenzen,
M. Giuliano, A. Kavelaars, “A generalized timeline
representation, services, and interface for automating space
mission operations, Space Operations 2012, Stockholm,
Sweden, June 2012.
 Davies, A. G., S. Chien, V. Baker, T. Doggett, J. Dohm,
R. Greeley, F. Ip, R. Castano, B. Cichy, R. Lee, G.
Rabideau, D. Tran and R. Sherwood (2006) Monitoring
Active Volcanism with the Autonomous Sciencecraft
Experiment (ASE). Remote Sensing of Environment, Vol.
101, Issue 4, pp. 427-446.
 T. Doggett, R. Greeley, A. G. Davies, S. Chien, B.
Cichy, R. Castano, K. Williams, V. Baker, J. Dohm and F.
Ip (2006) Autonomous On-Board Detection of Cryospheric
Change. Remote Sensing of Environment, Vol. 101, Issue
4, pp. 447-462.
 F. Ip, J. M. Dohm, V. R. Baker, T. Doggett, A. G.
Davies, R. Castano, S. Chien, B. Cichy, R. Greeley, and R.
Sherwood (2006) Development and Testing of the
Autonomous Spacecraft Experiment (ASE) floodwater
classifiers: Real-time Smart Reconnaissance of Transient
Flooding. Remote Sensing of Environment, Vol. 101, Issue
4, pp. 463-481.
 R. Knight, A. Donnellan, J. Green, Mission Design
Evaluation Using Automated Planning for High Resolution
Imaging of Dynamic Surface Processes from the ISS,
International Workshop on Planning and Scheduling for
Space (IWPSS 2013). Moffett Field, CA. March 2013.
 Michel Lemaı̂tre,, Gérard Verfaillie, Frank Jouhaud,
Jean-Michel Lachiver, and Nicolas Bataille. "Selecting and
scheduling observations of agile satellites." Aerospace
Science and Technology 6, no. 5 (2002): 367-381.
 D. R. Thompson, B. Bornstein, S. Chien, S. Schaffer, D.
Tran, B. Bue, R. Castano, D. Gleeson, A. Noell,
Autonomous Spectral Discovery and Mapping Onboard the
EO-1 spacecraft, IEEE Transactions on Geoscience and
Remote Sensing. 2012.
 Stephen G. Ungar, Jay S. Pearlman, Jeffrey A.
Mendenhall, and Dennis Reuter. "Overview of the earth
observing one (EO-1) mission." Geoscience and Remote
Sensing, IEEE Transactions on 41, no. 6 (2003): 1149-
1159.
 K. Weiss, "An Introduction to the JPL Flight Software
Product Line", 2013 Workshop on Spacecraft Flight
Software (FSW-13), Pasadena, CA, December 2013.
 Wikipedia, Newtons Method,
http://en.wikipedia.org/wiki/Newton%27s_method
, retrieved 10 Apr 2015.
 Wikipedia, Spot(satellite),
http://en.wikipedia.org/wiki/SPOT_%28satellite%29,
retrieved 10 Apr 2015.
 Wikipedia, Worldview-3,
http://en.wikipedia.org/wiki/WorldView-3, retrieved 18
Feb 2015.

15

Graph	
 1:	
 1%	
 search	
 0%	
 response	
 –	
 almost	
 all	
 search	
 requests	

scheduled
X	
 axis	
 is	
 number	
 of	
 requests	
 presented	
 to	
 scheduler
Y	
 axis	
 is	
 %-­‐age	
 of	
 search	
 requests	
 scheduled

Graph	
 2:	
 2%	
 search	
 0%	
 response	
 –	
 some	
 search	
 requests	
 already	
 are	

not	
 achieved.
X	
 axis	
 is	
 number	
 of	
 requests	
 presented	
 to	
 scheduler
Y	
 axis	
 is	
 %-­‐age	
 of	
 search	
 requests	
 scheduled

16

Graph	
 3:	
 4%	
 search	
 25%	
 response	
 –	
 response	
 images	
 are	
 higher	
 priority	
 so	

all	
 are	
 getting	
 scheduled.	
 	
 Search	
 images	
 are	
 pre-­‐empted	
 and	
 s/c	
 loses	
 time	

slewing	
 between	
 search	
 and	
 response	
 windows.
X	
 axis	
 is	
 number	
 of	
 requests	
 presented	
 to	
 scheduler
Y	
 axis	
 is	
 %-­‐age	
 of	
 search	
 (red)	
 or	
 response	
 (blue)	
 requests	
 scheduled

Graph	
 4:	
 4%	
 search	
 75%	
 response	
 –	
 more	
 response	
 images	
 are	
 pre-­‐
empting	
 search	
 images.
X	
 axis	
 is	
 number	
 of	
 requests	
 presented	
 to	
 scheduler
Y	
 axis	
 is	
 %-­‐age	
 of	
 search	
 (red)	
 or	
 response	
 (blue)	
 requests	
 scheduled

17

Graph	
 5:	
 4%	
 search	
 25%	
 response
X	
 axis	
 is	
 number	
 of	
 requests	
 (search	
 +	
 response)	
 presented	
 to	
 scheduler
Y	
 axis	
 is	
 CPU	
 time	
 to	
 construct	
 schedule

Graph	
 6:	
 4%	
 search	
 75%	
 response
X	
 axis	
 is	
 number	
 of	
 requests	
 (search	
 +	
 response)	
 presented	
 to	
 scheduler
Y	
 axis	
 is	
 CPU	
 time	
 to	
 construct	
 schedule

18

	paper_7.pdf
	BepiColombo Science Data Storage and Downlink Optimization Tool
	2 nicola.policella@esa.int, Senior Research Engineer, Advanced Mission Concepts Office, ESOC, Germany
	3 simone.fratini@esa.int, Senior Research Engineer, Advanced Mission Concepts Office, ESOC, Germany
	4 jonathan.mcauliffe@esa.int, Operations Scientist, BepiColombo Science Ground Segment, ESAC, Spain
	Abstract
	Introduction
	MPO SSMM Storage and Downlink
	Radio Frequency bands
	Latency
	PID to Packet Store allocation
	SSMM packet stores priorities
	Science Data Downlink Mechanisms
	On-Board Data Storage and Downlink Modelling
	Problem Rationale
	SSMM AI Tool Description
	Model-Based Representation with Timelines
	Solving Approach
	Flow Network Model
	Solving Methods
	Finding a downlink plan
	Iterative Leveling: Improving Latency
	Conclusions
	References

	paper_13a.pdf
	Daniel Tran* and Mark D. Johnston*
	Abstract

	1. Introduction
	2. DSN Scheduling: Process and Software
	3. Scheduling in the Follow-the-Sun Era
	4. The Role of Link Complexity
	5. Prototype and Experiments
	Link Assignment Algorithm
	User Interface

	6. Results and Conclusions
	Bibliography

	preface.pdf
	Preface
	Table of Contents
	Program Committee

	preface.pdf
	Preface
	Table of Contents
	Program Committee

	Preface3.pdf
	Preface
	Table of Contents
	Program Committee

	toc.pdf
	Preface
	Table of Contents
	Program Committee

	toc.pdf
	Preface
	Table of Contents
	Program Committee

