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Abstract 
Prior space missions have not routinely used onboard 
decision-making.  The Autonomous Sciencecraft (ASE), 
flying onboard the Earth Observing One spacecraft, has 
been flying autonomous agent software for the last decade 
that enables it to analyze acquired imagery on board and use 
that analysis to determine future imaging. However ASE 
takes approximately one hour to analyze and respond. 
This paper describes a scheduling prototype for the Earth 
Observing Autonomy (EOA) project to increase the 
responsiveness of spacecraft flight software for onboard 
decision-making as well as to increase the capabilities of 
flight software. Specifically, we target onboard image 
analysis and response within a single orbital overflight at 
low Earth orbit (about eight minutes). We focus on the re-
scheduling of the future image acquisitions in the context of 
an existing set of requests along with new requests based on 
onboard analysis of just acquired imagery.  We describe a 
greedy, constructive, scheduler with O(n2) performance and 
present preliminary results on its performance.   

 Introduction   
The Earth Observing Autonomy (EOA) project targets the 
development of a spacecraft autonomy capability to enable 
a wide range of Earth Observing, pointing spacecraft (e.g., 
Earth Observing One [Ungar et al. 2003], The Spot 
constellation [Wikipedia Spot 2015], Orbview Class 
spacecraft (such as Worldview-3)  [Ball, 2015, Wikipedia 
Worldview-3 2015] to image, analyze the image, and re-
image based on that analysis within a single overflight, 
imposing a responsiveness constraint of 5-8 minutes.  This 
would represent a dramatic improvement over the current 
state of the art, ASE [Chien et al. 2005], which responds 
within roughly 1 hour. 
 We describe a software prototype of the EOA capability 
that includes several autonomy components: 
1.    Onboard science processing algorithms. Science 

analysis algorithms process onboard image data to 
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detect science events and suggest reactions to 
maximize science return.  Specifically we investigate 
the use of the Mixture –tuned Match Filter (MTMF) 
[Boardman and Kruse 2011] for onboard spectral 
analysis of acquired imagery. However ASE has 
already demonstrated the utility of thermal analysis for 
volcanoes and wildfires [Davies et al. 2006], spectral 
analysis for flooding [Ip et al. 2006], spectral analysis 
for cryosphere study [Doggett et al. 2006], as well as 
spectral unmixing for mineralogical analysis 
[Thompson et al. 2012].   

2.    Onboard planning and scheduling software. The 
Continuous Activity Scheduling Planning Execution 
and Replanning (CASPER) [Chien et al. 2000] 
combined with the Eagle Eye Mission Planning 
Software [Knight et al. 2013] system generates a 
baseline mission operations plans from observation 
requests.  This baseline plan is subject to considerable 
modification onboard in response to data analysis from 
step 1. The model-based planning algorithms enable 
rapid response to a wide range of operations scenarios 
based on models of spacecraft constraints.  However, 
in this paper we focus on a greedy, constructive, non-
backtracking scheduler designed specifically for this 
application. 

3.    Robust execution software. The JPL core flight 
software [Weiss 2013] (CFS) expands the CASPER 
mission plans to low-level spacecraft commands and 
includes a powerful and expressive sequencing engine. 
The CFS sequencing engine monitors the execution of 
the plan and has the flexibility and knowledge to 
perform improvements in execution as well as 
procedural responses to execution anomalies. 
 

One challenge to spacecraft autonomy is limited computing 
resources. An average spacecraft CPU offers 200 MIPS 
and 128 MB RAM – far less than a typical laptop 
computer. For the EOA prototype, we baseline a Rad 750 
or Leon processor for all of the autonomy capability. 
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 EOA demonstrates an integrated autonomous mission 
response capability using onboard science analysis, 
replanning, and robust execution. EOA performs intelligent 
science data analysis, and spacecraft retargeting.  This 
capability can reduce data downlinked in cases where 
onboard analysis determines the data not of interest (e.g. 
search for active volcanos and return only images that 
contain active volcanos).  This capability can also enable 
an increase in science return.  In many cases, a mission is 
not limited by observation time, but rather by downlink 
volume. In these cases, if the spacecraft can acquire 
imagery searching for a specific signature and not return 
the data if the signatures not found, then search can be 
made much more efficient. Specifically, the spacecraft can 
search  for active volcanoes a large amount of the time, and 
only pay the downlink cost proportional to the number of 
images with active volcanoes rather than the total number 
of images acquired searching for active volcanoes.  In 
cases where phenomena may be short-lived, onboard 
detection may enable additional data to be acquired, 
gathering more science data on the scarce phenomena (e.g. 
when detecting an active volcano, add requests to image it 
more frequently and in greater detail). 
 The execution flow of the EOA software is shown in 
Figure 1.  As the spacecraft overflys targets, it images 
them.  As the imagery is acquired, it is processed onboard 
the spacecraft.  Based on the operations policies of the 
missions, this analysis may result in new image requests.  
These image requests are folded into the prior image 
requests and a new schedule is constructed that may 
acquire the new image and may change other images 
acquired (such as pre-empting a less valuable target).  
Spacecraft execution then continues. 

These capabilities enable radically different missions with 
significant onboard decision-making allowing new ways to 
conduct science from space. The paradigm shift toward 
highly autonomous spacecraft will enable future space 

missions to achieve significantly greater science returns 
with reduced risk and reduced operations cost. 
In this paper, as the meeting topic is planning and 
scheduling, we focus on the rescheduling portion of the 
overall responsiveness of the mission.   We begin by 
describing the overall on board response scenario to show 
the overall mission timeline and the context of 
rescheduling. 

Autonomous Science Scenario 
Our onboard planning capability is designed to support an 
EOA mission scenario. While the EOA software is 
designed to support a wide range of spacecraft without any 
modification, in this section, we describe a scenario with a 
Worldview-3 like spacecraft [Ball 2015, Wikipedia 2015] 
to image science targets, process and analyze onboard 
image data, and re-plan operations based on science 
results.  
 For this demonstration we assume several baseline 
mission parameters.  

 
Parameter Value 
Orbit 950 km Sun synchonous 
Initial Science Images 30-40° lookahead from nadir 
Response image Nadir to 20° lookahead 
Spacecraft slew rate 4.5° per second, instantaneous 

start and stop, no settle time 
Imaging time Dwell of 1s per image 
Image request granule 
"footprint" 

0.5 km along track x 4 km 
across track 

 
In Figure 1 we highlight some of the geometry 
characteristics of the EOA scenario.   As the spacecraft 
orbits the earth, it has several viewing windows. The first 
viewing window is the initial science image window which 
covers from 31 to 38° in front of the spacecraft. The 
second viewing window is the response image which 
covers from 0° lookahead (nadir) to 28° lookahead. As the 
spacecraft flies over the earth it is imaging in large number 
of locations in the initial science window.   As it acquires 
this imagery, software analyzes the imagery onboard the 
spacecraft.  This analysis indicates the possible need to 
take follow-up imagery (in the response imaging window).   
For example, in the initial science window we might search 
for the thermal signature of a volcanic eruption or wildfire.  
In the response window we might further image to 
precisely determine the extent of the lava flow and the 
exact temperature map of the flow.   
The goal of the scheduler is to accommodate as many of 
the initial science and response imaging requests but is 
guided by the priority of the requests and restricted by the 
pointing and slewing capabilities of the spacecraft (as well 
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as any other operations constraints).  As shown in Figure 2, 
from a side view, the speacecraft must slew forwards and 
backwards looking a variable amount ahead to view the 
image targets.  At the same time, the spacecraft is moving 
forwards due to orbital motion (at approximately 7.5km 
per second).  Because processing the images requires some 
time, the initial search window is significantly ahead of the 
response window.  This enables initial search-ed images to 
be processed/analyzed in time to allow for scheduling of 
followup imagery in the response window.  The response 
window does not extend behind the spacecraft in order to 
maintain consistent lighting conditions. 
 This slewing forwards and backwards along the 
spacecraft motion track is complicated by two things.  
First, the angle at which the spacecraft must look forward 
to view the target is a non linear function of when the 
spacecraft wishes to view the target. Specifically, at nadir, 
for the Earth, in a 950km orbit, 1 degree of lookahead 
corresponds to 16.6 km ahead of nadir in the ground track.  
However, at 37° of lookahead, 1° of further lookahead  
(e.g. to 38° lookahead) corresponds to 30.7 km ahead in 
the ground track.  The second issue is that typically the 
slew rate of the spacecraft is not linear, there is a ramp up 
acceleration of the spacecraft to some maximum slew rate, 
a portion of the slew at the maximum rate, then a ramp 
down as the spacecraft arrives at the desired position.   
 Figure 2, Case 1 shows these two factors from the 
spacecraft pointing perspective.  In this example the 
spacecraft is looking ahead and wants to view a target 
further ahead beyond the current look angle.  The spaceraft 
could  simply wait until the target comes into view, or it 
can slew ahead to meet the target.  The blue line shows the 
track of a fixed point on the ground in terms of the look 
angle from the spacecraft as the spacecraft approaches the 
point.  This line indicates that at time 0 the target is at 42° 
lookahead.  The red line shows the angular position of the 
spacecraft reachable from the starting point of nadir as a 
function of time.  The intersection of these two lines shows 
the earliest possible time that the spacecraft can view the 
target.  The graph indicates that if the spacecraft begins 
slewing it will be able to reach the target but that the target 
will be at 38° lookahead when it is reached.  In this case 

the motion of the spacecraft is helping us to meet the target 
earlier. 
 The right side of Figure 2 shows a different case, Case 2.  
In Case 2, the spacecraft is pointing at 38° lookahead, and 

wants to next view a target currently at 20° lookahead.  In 
this case the spacecraft motion is carrying the target 
(relative to the spacecraft) away from the current 
spacecraft pointing and the slew must catch up.  The graph 
shows that the by the time that the spacecraft can view the 
target it will be at 17° lookahead. 
 Figure 4 is a view from above the spacecraft looking 
down on the Earth.  As the spacecraft moves along track 
(from left to right in Figure 4), the spacecraft must also 
slew across track (up and down in the Figure) as well as 
forwards and backwards along the ground track (left and 
right in the Figure) to image targets. 

 
This scheduling problem is a challenging one for several 
reasons. 
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1. The spacecraft has limited ability to slew from 
one target to the next (e.g. each slew takes up 
valuable time). 

2. Targets are distributed across the ground track of 
the spacecraft so that the amount of time required 
to image a target depends on the preceding and 
following (temporally) targets in the schedule. 

3. Because the initial viewing and response doing 
windows are separated angularly, slewing back 
and forth between these windows can be wasteful 
of time. 

4. Image analysis takes time.  During this time 
spacecraft is moving towards the target(s).  This is 
the reason why the initial image analysis and 
response image analysis windows are not 
overlapping, to allow the onboard software time 
to analyze the images. 

5. Generating the schedule also takes time (the focus 
of this paper). 

6. When calculating a start time to schedule an 
observation of a target, the spacecraft intercepts 
the target.  The spacecraft must slew to a given 
position (of the target), reaching that position at 
the exact time that the target is in that position 
relative to the spacecraft. This requires an 
accurate model of the spacecraft slew time as well 
as the ability to project where relative to the 
spacecraft any target will be at any point in time. 

7. In addition to pointing, the scheduler must 
consider other resources such as power, thermal, 
data volume (e.g. [Chien et al. 2010, Chien et al. 
2012]).  However in this paper we focus on the 
pointing and slewing aspect of the problem as the 
state and resource management aspect of the 
problem has been considered elsewhere. 

 
In order to simplify the scheduling problem we first 
transform the image request locations from a <latitude, 
longitude, altitude> coordinate frame of reference to an 
<along track, across track> frame of reference (in this 
process using a model of the spacecraft orbit). From this 
<along the track, across track frame of reference>, 
combined with the spacecraft orbit, the set of valid times to 
view any target in the initial viewing window or response 
window is easily computed. 
 
R = {r1,…rn} sorted from highest priority to lowest priority 
 
achieved_requests = {} 
best_solution = nil 
for adding_request ∈{r1…ra} 
  call schedule( achieved_requests ∪ {adding_request}); 
  if success then  
 achieved_requests ← achieved_requests ∪ {adding_request} 

 best_solution ← solution returned by schedule 
 
 
Schedule(request_set = {r1…ra}) 
Sort request set by earliest start time  
   (e.g. request with earliest start time is first in set) 
current_solution = {} 
for current_request ∈{r1…ra} 
 attempt to add current_request to current_solution  
 by scheduling it at the earliest possible time that  
 it will fit into the schedule 
 if cannot add return FAIL 
 else (success} continue 
return current_solution 
 
This scheduling algorithm represents a greedy outer loop 
where we try to add requests in priority order.  The inner 
loop is given a set of requests, and attempts to schedule 
them sweeping forward in time considering earliest 
possible start time requests first. 
 Figure 5 shows the inner loop of the scheduler.  In figure 
5a the two headed arrows indicate the earliest and latest 
possible times each image can be acquired.  The longer 
intervals are response images and the shorter intervals are 
initial search requests.  In Figure 5a the requests are sorted 
by earliest possible start time.  Figure 5b shows the 
requests being scheduled.  The software tries to add each 
request in the earliest start time sorted order, adding the 
request to the schedule as early as possible.  The orange 
blocks indicate the slew time and the blue blocks indicate 
the imaging time.  The imaging time is roughly constant 
but the slewing time is higher if the preceding image was 
of a different type (initial, response), this is because the 
spacecraft is generally slewing a greater distance (up to 0° 
! 38° lookahead) as opposed to from one initial search to 
another (maximum slew from 31° ! 38°) or from one 
response to another (from 0° ! 28°).   
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As the inner loop of the scheduler is attempting to insert 
the next request, it must repeatedly solve the problem of 
slewing forwards and backwards along track to view 
targets either ahead of or behind the current position.  The 
scheduler solves this problem of the intersection of the 
earliest possible slew position curve intersecting the target 
position angle relative to the spacecraft using Newtons 
Method [Wikipedia Newtons 2015].  In computing this 
observation time the software must take the latest of: the 
spacecraft along track slew intersecting the target, the 
mission mode constraints (e.g. initial search allowed look 
angles, response image allowed look angles), as well as the 
across track slew time to view the target.  Solving for the 
across track slew time is simpler than the along track 
problem – while the earths curvature does make the 
angular position a nonlinear function of the ground 
distance, there is no across track motion to compensate for 
and indeed this conversion from ground distance to angular 
distance can be pre-processed. In practice for our scenario 
slew times can range from a fraction of a second (for 
adjacent tiles) to 5-10 seconds. 
 While we currently use a simple constant slew rate 
model for our current prototype, a more realistic model 
would have: 

1. an acceleration/decceleration profile,  
2. a maximum rate,  
3. a different model for different axes of the 

spacecraft,  
4. a settling time for the spacecraft to stabilize after a 

slew in which the settling time depends on the 
parameters of the image being acquired as well as 
the velocity and acceleration profile of the slew 

In our software architecture we treat the slew computation 
as a black box so that we can easily insert a high(er) 
fidelity model. 

Estimated computational complexity of the 
scheduling  algorithm 
 
Our analysis of the above observation scheduling 
algorithm indicates several factors in its computational 
complexity. 
 Since we schedule from scratch each iteration we will 
always make R passes through the outer loop where R is 
the number of scheduling requests. 
 Each of the R passes through the outer loop makes a 
single call to the “schedule” function.  The schedule 
function performs a computation to attempt to add a slew 
and image to the schedule each iteration. This effort to add 
a slew and image requires computation in worst case on the 

order of the number of items currently in the schedule.  
While the number of items currently in the schedule is 
certainly no worse than R above (total number of requests) 
if the number of requests that can actually fit into the 
schedule Smax is much smaller than R this will be a much 
lower bound.   
 For example, if the entire search window corresponds to 
200s of observation time, and the minimum observation 
length is 2s Smax < 100 so if R is >> 100 it does not matter, 
the complexity is of order Smax.  So overall the 
computational complexity of the scheduler is RSmaxC 
where R is the total number of requests and Smax is the 
number of requests that will actually fit in the schedule and 
C is the computation required to evaluate the feasibility of 
inserting a single request into the schedule. 
 Note that this algorithm does not take advantage of the 
fact that the set of changes to the request set is small 
compared to the size of the request set. An obvious 
optimization would be to only reschedule the portion of the 
schedule of lesser priority than the highest priority new 
request. 

Empirical evaluation of the scheduling 
algorithm 
In order to verify our analysis of the computational 
complexity of the algorithm, we also performed a limited 
empirical analysis of the algorithm.  For this analysis we 
generated a synthetic data set using the following 
parameters. 
 

Parameter Value 
Initial request probability 1-5% 

Probability of a response image 
given a search request performed 

25, 50, 75% 

 Scheduling horizon 45° lookahead 
 

Figure 6: Preliminary run information 
 
The empirical data is shown at the end of the paper.  
Graphs 1 and 2 show that the scheduler can only 
completely achieve a relatively small percentage of initial 
search requests (a few percent).  Already if 2% of all 
possible tiles are requested for search with no responses 
many of the search requests are not being satisfied. 
 When response requests are included this further drives 
down the percentage of search requests that can be 
scheduled because response requests are higher priority 
and they preclude search requests.  Graphs 3 and 4 show 
that as response images are added to the scheduling 
problem (at higher priority than search requests) the 
scheduler is able to accommodate fewer search requests.  
Graph 3 shows where 25% of searches yield a response 
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and Graph 4 shows where 75% of searches yield a 
response. 
 Graphs 5 and 6 show the CPU time required for the 
scheduler in VxSIM.   The run-time data indicates that the 
scheduler is extremely fast, taking only a fraction of a 
second in the software simulation.  While the flight 
processor is expected to be significantly slower, the 
scheduling algorithm is not optimized in any way.  One 
obvious optimization is that the scheduler is solving the 
problem from scratch each invocation when the majority of 
the inputs have not changed.  Clearly an incremental 
rescheduler offers great potential for efficiency gains. 

Discussion 
 
The Autonomous Sciencecraft (ASE) has been flying the 
CASPER continuous planner on board the Earth Observing 
One (EO-1)spacecraft for the past decade. However, the 
response time for CASPER on EO-1 is tens of minutes-in 
part due to the meager computation on board the 
spacecraft: 3 MIPS and no floating point computation in 
hardware for the RAD 3000 CPU on board. Additionally, 
the planning problem for EO-1 does not involve significant 
geometric issues. The spacecraft generally only images 
using its push broom imager and a fixed angle relative to 
nadir, therefore there is no flexibility in the imaging time 
for any target. The problem is rather one of which 
combination of images should be acquired.  The same issue 
of computing which combination of images and slews is 
feasible is challenging (and solved on the ground).  The 
EO-1 pointing problem is complex because EO-1 only has 
three reaction wheels, therefore as further observations are 
required momentum builds up on the reaction wheels that 
restricts later pointings of the spacecraft due to maximum 
rates that the reaction wheels can achieve.  While this 
momentum can be relieved using a magnetic torque bar, 
this is a very slow process so observations are quite 
constrained by builtup angular momentum (for further 
details see [Chien et al. 2010]).  

The CLASP [Rabideau et al. 2010, Doubleday et al, 
2014] and Eagle eye [Knight et al. 2013] planners solve 
geometric coverage planning problems from a ground 
context.   These systems can incorporate more complex 
geometric constraints but also have better computational 
resources and less time constraints. 

AEOS [LeMaitre et al. 2002] is another project to 
perform automatic observation planning on the ground. 
AEOS solves a much more complicated and expressive 
problem in which the spacecraft slews while imaging to 
cover target polygons and the direction of the slew can be 
optimized to cover the polygon as efficiently as possible.  
In contrast we assume a framing imager and that the 
alignment of the imager is in a fixed aspect ratio with 
respect to a long track and across track to simplify the 
problem. We do this because our onboard computation 

capabilities are necessarily limited and also our response 
time for the scheduler correspondingly constrained. 
  In the future we plan on further maturing this work, 
refining the scheduling algorithms as well as bringing the 
work into a relevant hardware testbed. 

Summary 
We describe an overall software architecture for onboard 
imaging, image analysis, operations scheduling, and re-
imaging within a realistic flight software operating system 
and flight hardware performance environment.  This 
prototype demonstrated the feasibility of performing such 
functions autonomously within a low earth-orbiting 
environment (roughly 5-8 minutes overflight time).  Future 
efforts will further mature this concept and software by 
bringing the prototype into a relevant flight hardware 
testbed. 
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