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1 Introduction and Prior Work
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Empirically Estimating Generalization Ability
of Feedforward Neural Networks

We estimate the number of training samples required to ensure that the performance of a neural
network on its training data matches that obtained when fresh data is applied to the network. Existing
estimates are higher by orders of magnitude than practice indicates. We narrow the gap between theory
and practice by transforming the problem into determining the distribution of the supremum of a random
field in the space of weight vectors, which in turn is attacked by application of a recent technique called
the Poisson clumping heuristic.
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Cornell University Department of Electrical Engineering

Ithaca, NY 14853
mjt,tlfine @ee.cornell.edu

We investigate the tradeoffs among , , and of
feedforward neural networks so as to allow a reasoned choice of network architecture in the face of limited
training data. Nets are functions ( ; ), parameterized by their weight vector , taking points

as input. For classifiers, network output is restricted to 0 1 while for forecasting it may be any
real number. The architecture of all nets under consideration is , whose complexity may be gauged by its
Vapnik-Chervonenkis (VC) dimension , the size of the largest set of inputs the architecture can classify in
any desired way (‘shatter’). Nets are chosen on the basis of a training set = ( ) . These
samples are i.i.d. according to an probability law . Performance of a network is measured by the
mean-squared error

( ) = ( ( ; ) ) (1)

= ( ( ; ) = ) (for classifiers) (2)

and a good (perhaps not unique) net in the architecture is

= arg min ( )

To select a net using the training set we employ the empirical error

( ) =
1

( ( ; ) ) (3)

sustained by ( ; ) on the training set . A good choice for a classifier is then

= arg min ( )

In these terms, the issue raised in the first sentence can be restated as, “How large must be in order to
ensure ( ) ( ) with high probability?”

For purposes of analysis we can avoid dealing directly with the stochastically chosen network by
noting

0 ( ) ( ) ( ) ( ) + ( ) ( )

2 sup ( ) ( )

A bound on the last quantity is also useful in its own right.
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2 Applying the Poisson Clumping Heuristic
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The bound above reflects the possible improvement of Vapnik’s original exponent by a factor of two.
See chapter 7 of [5] for treatment of some technical details in this limit.

We adopt the classification setting as we disucss prior work in the remainder of this section. The best-
known result is due to Vapnik [1], introduced to a wider audience by Baum and Haussler [2]:

( sup ( ) ( ) ) 6
(2 )

!
(4)

This remarkable bound not only involves no unknown constant factors, but holds independent of the data
distribution . Analysis shows that sample sizes of about

= (4 ) log 3 (5)

are sufficient to force the bound below unity, after which it drops exponentially to zero. If for purposes of
illustration we take = 1, = 50, we find = 68 000, which disagrees by orders of magnitude with the
experience of practitioners who train such low-complexity networks (about 50 connections). More recently,
Talagrand [3] has obtained another upper bound to (4) (having a different functional form) which implies a
sufficient condition of order . However, the bound involves inaccessible constants so the result is of no
practical use.

Formulations providing finer resolution near ( ) = 0 have been examined. Vapnik [1] upper bounds
(sup ( ) ( ) ( ( ) ) ); the normalization ( ) ( ( )) when ( ) 0.

Anthony and Biggs [4] work with the equivalent of (sup ( ) ( ) 1 ( ( )) ), obtaining
the sufficient condition

= (5 8 ) log 12 (6)

for nets, if any, having ( ) = 0. If one is guaranteed to do reasonably well on the training set, a smaller
order of dependence results.

We adopt a new approach to the problem. For the moderately large values of we anticipate, the central
limit theorem informs us that

[ ( ) ( )]

has nearly the distribution of a zero-mean Gaussian random variable. It is therefore reasonable to suppose
that

( sup [ ( ) ( )] ) ( sup ( ) ) 2 ( sup ( ) )

where ( ) is a Gaussian process with mean zero and covariance

( ) = ( ) ( ) = ( ( ; )) ( ( ; ))

The problem about extrema of the original empirical process is equivalent to one about extrema of a corre-
sponding Gaussian process.

The Poisson clumping heuristic (PCH), introduced in a remarkable book [6] by D. Aldous, provides a
tool of wide applicability for estimating such exceedance probabilities. Consider the excursions above level
(= 1) of a sample path of a stochastic process ( ). At left below, the set : ( ) is seen
as a group of “clumps” scattered in weight space . The PCH says that, provided has no long-range
dependence and the level is large, the centers of the clumps fall according to the points of a Poisson process
on , and the clump shapes are independent. The vertical arrows (below right) illustrate two clump centers
(points of the Poisson process); the clumps are the bars centered about the arrows.
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3 Empirical Estimates of Clump Size
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In fact, with ( ) = ( ( ) ), ( ) the size of a clump located at , and ( ) the rate of
occurrence of clump centers, the fundamental equation is

( ) ( ) ( ) (7)

Since clump centers form a Poisson process, the number of clumps in is a Poisson random variable
with parameter ( ) . The probability of a clump, which we wish to make small since it corresponds
to existence of a bad estimate of ( ) by ( ), is

( 0) = 1 exp ( ) ( )

where the last approximation holds because our goal is to operate in a regime where this probability is near
zero. Letting Φ̄( ) = ( (0 1) ) and ( ) = ( ), we have ( ) = Φ̄( ( )). The fundamental
equation becomes

( sup ( ) )
Φ̄( ( ))

( )
(8)

It remains only to find the mean clump size ( ) in terms of the network architecture and the statistics
of ( ). To give an idea of the results that are possible, suppose that the network activation functions are
twice differentiable. Then the process can be locally approximated and the clump size determined. This
results in estimates of sample size that are of order , with a multiplicative factor depending in a simple
way on the network and the distribution of the data [7].

It is widely known (e.g., [8]) that probabilities like (8) are determined by behavior near the maximum-
variance point, where the dominant numerator term takes its largest value. In classification, for example,
the maximum-variance point is at ( ) = 1 2. Such nets are not very interesting as classifiers, and certainly
it is not desirable for them to determine the entire probability. This problem can be avoided by focusing
instead on

sup
( ) ( )

( )
sup

( )

( )
(9)

which has the added benefit of allowing a finer resolution to be used where ( ) is near zero. In classification
for example, if is such that with high probability

sup
( ) ( )

( )
= sup

( ) ( )

( )(1 ( ))
(10)

then ( ) = 0 implies ( ) (1+ ) . We see that around ( ) = 0 the condition (10) is
much more powerful than the corresponding unnormalized one. Sample size estimates using this formulation
give results having a functional form similar to (6).

Conditional on there being a clump center at , the upper bound

( ) ( ) 1 ( ( ) ) (11)

is evidently valid: the volume of the clump at is no larger than the total volume of all clumps. (The right
hand side is indeed a function of because we condition on occurrence of a clump center at . See [9] for
more on the tightness of this bound.) To compute its mean, we approximate

( ) = ( ( ) a clump center)

( ( ) ( ) ) (12)
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The behavior of the covariance locally in such neighborhoods is the key to finding the clump size.
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The point is that occurrence of a clump center at is a smaller class of events than merely ( ) : the
latter can arise from a clump center at a nearby capturing . Since ( ) and ( ) are jointly
normal, abbreviate = ( ), = ( ), = ( ) = ( ) ( ), and let

= ( ) = ( )
1

1
(13)

= (1 ) (1 + ) (constant variance case) (14)

Evaluating the conditional probabilities of (12) presents no problem, and we obtain the estimate

( ) ( ) Φ̄ (( ) ) (15)

This clump size estimate is useful in its own right if one has information about the covariance of . Other
known techniques of finding ( ) exploit special features of the process at hand (e.g. smoothness or
similarity to other well-studied processes); the above expression is valid for any covariance structure.

This approximation will be used with (8) to find

(sup ( ) )
Φ̄( )

Φ̄ (( ) )
(16)

Since is large, the main contribution to the outer integral occurs for near a variance maximum, i.e.
for 1. If the variance is constant then all contribute. In either case is nonnegative. By
comparison with results for the differentiable process [7], we expect the estimate (15) to be, as a function
of , of the form (const ) for, say, = . In particular, we do not anticipate the exponentially small
clump sizes resulting if ( ) ( ) 0. To achieve such polynomial sizes, must come close to zero
over some range of , which evidently can happen only when 1, that is, for in a neighborhood of .

We also
remark that this approximation to clump size can serve in calculating a lower bound to the true exceedance
probability (not the PCH approximation); see [9].

Here is a practical way to approximate the integral giving ( ) using the training set, and thus
obtain probability approximations in the absence of analytical information about the unknown and the
potentially complex network architecture . For 1 define a set of significant

( ) = : ( ) (17)

( ) = vol( ( )) (18)

and note that from the monotonicity of Φ̄

( ) Φ̄(( ) ) ( ) Φ̄(( ) )

This apparently crude lower bound for Φ̄ is accurate enough near the origin—noting the above comments
this is the region that counts—to give satisfactory results in the cases we have studied.

With this bound we have

(sup ( ) )
Φ̄( )

( ) Φ̄(( ) )
( ) exp( (1 ) 2 ) (19)

because as long as is not too small, both arguments of Φ̄ will be large, justifying use of the asymptotic
expansion Φ̄( ) ( 2 ) exp( 2). We now need to find ( ), which we term the ,
as it represents those weight vectors whose errors ( ) are highly correlated with ( ).

One simple way to estimate the correlation volume is as follows. Select a weight and using the training
set compute

( ( ; )) ( ( ; )) and ( ( ; )) ( ( ; ))
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It is then easy to estimate , , and , and finally ( ), which is compared to the chosen to decide
if ( ) or not.

The difficulty is that for large the correlation volume is much smaller than any approximately-enclosing
set. Ordinary uniform Monte Carlo sampling and even importance sampling methods fail to estimate the
volume of such high-dimensional convex bodies because so few hits can be scored in probing the space [10].
It is necessary to concentrate the search.

The simplest technique is to let = except in one coordinate and sample along each coordinate axis.
The correlation volume is then approximated as the product of these one-dimensional measurements.

We are now in a position to perform simulation studies to test our ability to estimate the correlation volume
and hence the exceedance probability. We normalize the process ( ) by its standard deviation ( ) as
indicated earlier. The variance of the scaled process is unity and (19) becomes

(sup
( )

( )
)

Φ̄( )

Φ̄( )
( ) (20)

which we will estimate by a Monte Carlo integral, using the above method for finding the integrand ( ).
The only difficulty is the choice of , which in turn depends on . Recomputing the integral for many
different or values must be avoided.

This can be done if we make the reasonable assumption that

( ) = ( )

with = 1 or 2 according as the activation functions are differentiable or not. This amounts to supposing
the correlation ( ) falls off quadratically or linearly for in a neighborhood of . The coefficients may
change as varies but the basic form of the correlation does not.

Thus, once the integral is computed for a reference , it can be scaled to a desired 1 via

sup
( )

( )

Φ̄( )

Φ̄( )
( ) (21)

Upon differentiating we find the optimal equals , and

sup
( )

( )
Φ̄( )

( )

Φ̄( )
(22)

= ( ) Φ̄( ) exp( ) (23)

where the final line defines .
As a brief demonstration of the potential accuracy of the method outlined above, consider the following

example of a perceptron. Nets are ( ; ) = 1 ( ) for = , and data is uniform on

[ 1 2 1 2] . Suppose = ( ; ) and = [1 1]. This is a version of the in .
Nets are discontinuous so ( ) is ‘rough’ with = 2.

Below is the empirically determined versus for the threshold function. At each twenty independent
estimates of are averaged. Each estimate is found via a Monte Carlo integral, as described above, with
correlation volumes determined from a training set of size 100 . Over the range, say, 7 50, we see

1 and

sup
( )

( )
( ) Φ̄( )

(1 ) log sup
( )

( )
1 + log( ) (1 2)( )

This falls below zero at = 5 4, implying that sample sizes above the critical value = 5 4 are
enough to ensure (10) with high probability. As in the remarks below that equation, if there is a net having
( ) = 0, we see that sample sizes above = 5 4 will guarantee ( ) with high probability, which

compares favorably with (6).
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5 Discussion and Conclusions
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To find realistic estimates of sample size we transform the original problem into one of finding the distribution
of the supremum of a derived Gaussian random field, which is defined over the weight space of the network
architecture. The latter problem is amenable to solution via the Poisson clumping heuristic. In terms of
the PCH the question becomes one of estimating the mean clump size, that is, the typical volume of an
excursion above a given level by the random field.

We obtain a useful estimate for the clump size of a general process in terms of the correlation volume
( ). For normalized error, (19) becomes approximately

sup
( ) ( )

( )

vol( )

( )

where the expectation is taken with respect to a uniform distribution on . The probability of reliable
generalization is roughly given by an exponentially decreasing factor (the exceedance probability for a single
point) times a number representing degrees of freedom. The latter is the mean size of an equivalence class of
“similarly-acting” networks. There is an obvious parallel with the Vapnik approach, in which a worst-case
exceedance probability is multiplied by a growth function bounding the number of classes of networks in
that can act differently on pieces of data. In this fashion the correlation volume is an analog of the VC
dimension, but one that .

To capture this dependence we have proposed practical methods of estimating the correlation volume
empirically from the training data. Initial simulation studies based on a perceptron with input uniform on
a region in show that these approximations indeed yield informative estimates of sample complexity.


