
Prolog

1. Introduction

Prolog is a computer language which allows one to program in logic. The language was invented in 1970 by Alain

Colmerauer and his associates. By programming in logic, we mean that instead of explicitly stating what a machine

should do to solve a problem (procedural programming [Pascal, C, FORTRAN]), or specifying a functional transforma-

tion from data to answers (functional programming [LISP without set!]), we set forth the rules which govern the prob-

lem we are trying to solve and then ask questions to find the solution (logic programming). Prolog, like LISP, has a

fanatical following within the Artificial Intelligence community.

Prolog is an interactive system like LISP: there is no intermediate compilation stage. Prolog is available on cec1

and cec2 as ‘cprolog’.

2. The Language

2.1. Primitives

In Prolog we specify the relations between objects. Hence, there are primitive objects and primitive relations.

There are two types of primitive object: constants and variables. Constant objects begin with a lower-case letter and are

interpreted literally. Variables begin with a capital letter and can "match" any object at all. Thus eve represents the

literal string "eve," but Eve stands for "anything at all."

Primitive relations are expressed as facts about objects. Thus the relation

mother_of(cain, eve). (1)

means that the specific person eve is the mother of the specific person cain. Likewise, the relation

mother_of(Cain, eve).

means that the specific person eve is the mother of every object, because Cain is a variable that matches anything.

Finally, we may ask questions about relationships:

?- mother_of(cain, eve).

causes Prolog to answer yes if the expression (1) had been entered. The ‘?-’ introduces questions that we ask Prolog.

2.2. Means of combination

The most elementary means of combination is simple juxtaposition of facts. If we enter the lines

mother_of(cain, eve). (2)
mother_of(abel, eve).

then we express our belief that eve was the mother of cain and abel.

The second means of combination uses the ‘,’:

?- mother_of(cain, eve), mother_of(abel, eve).

This will cause Prolog to reply yes if both of the comma-separated assertions are in the database. The ‘,’ is a logical

and in Prolog.

2.3. Means of abstraction

The rule is the means of abstraction in Prolog. Rules are formed by naming combinations of facts and other rules,

much as procedures in LISP are made by naming combinations of functions. An example is the rule

sibling_of(Sib1, Sib2) :- mother_of(Sib1, Mother), mother_of(Sib2, Mother).

Prolog - 1 - April 13, 1988

Here we mean that if two people have the same mother, then they are siblings. If we ask

?- sibling_of(cain, abel).

Prolog will answer yes if the facts (2) had been defined. The significance of this is that we have defined an entirely

new relation using old rules.

3. Computational Model

When we type facts and rules into Prolog, they are entered into a database in the order typed. When we ask a

question, it is viewed by Prolog as a goal to be satisfied. To satisfy the goal, Prolog scans the database from top to bot-

tom looking for a matching fact or rule. Thus if our database is:

mother_of(cain, eve). (1)
mother_of(abel, eve). (2)
mother_of(abel, alice). (3)
/* G1 (first subgoal) G2 (second subgoal) */
sibling_of(Sib1, Sib2) :- mother_of(Sib1, Mother), mother_of(Sib2, Mother).

and we ask the question

?- mother_of(abel, eve).

Prolog responds yes because it found the fact in the database.

If there are variables in our query, Prolog responds with the instantiations (settings) of variables that were necessary

to make the question true. So if we ask

?- mother_of(X, eve).

Prolog answers

X = cain

which is the first value for X that made our question true. (By true, we actually mean "derivable using the facts and rules

in the database.") If we type ‘;’, Prolog responds with the next instantiation that makes the question true:

X = abel

If we once more type ‘;’, Prolog responds no, indicating that no more facts of the form we want can be derived from

the database.

Suppose that we ask

?- sibling_of(abel, cain).

which we know should be derivable under the rules in the database. Prolog scans the database looking for matching facts

and rules. The only entry that matches is the rule above. (Remember that Sib1 and Sib2 may stand for any constant

or variable.) Prolog now instantiates Sib1 to abel and Sib2 to cain everywhere in the rule for sibling_of.

After doing this we have two subgoals to satisfy: mother_of(abel, Mother) and mother_of(cain,

Mother), where the intermediate variable Mother in each expression must be the same. Prolog always works from

left to right in satisfying subgoals, so we first look for a fact or rule of the form mother_of(abel, Mother). The

fact mother_of(abel, eve) matches, and so we instantiate all ocurrences of Mother in the rule to eve. Now we

attempt to satisfy the second subgoal, which, with the instantiation of Mother, is mother_of(cain, eve). This is

in the database and so our main goal succeeds and yes is printed.

As a final exercise, imagine that we ask the question

?- sibling_of(abel, X).

We scan the database and see that the last line matches the query, so we instantiate Sib1 to abel there and attempt to

Prolog - 2 - April 13, 1988

satisfy mother_of(abel, Mother) (G 1). The second fact matches, and we instantiate Mother to eve and try to

satisfy mother_of(X, eve) (G 2). The first fact matches, and so we print out

X = cain

Now we type ‘;’ to try to resatisfy the query. We therefore must resatisfy G 2, so we uninstantiate X and scan the data-

base from where we left off, at the second fact. We get a match immediately:

X = abel

We try to satisfy G 2 once more, so again we uninstantiate X and scan, but this time G 2 fails: there is no fact of the form

mother_of(X, eve). Now we back up one step and attempt to resatisfy G 1. We look for a fact of the form

mother_of(abel, Mother), starting from the third fact, which is where we left off before. The third fact matches,

so we try to satisfy G 2: mother_of(X, alice). We find no matching fact, so we again try to resatisfy G 1, starting

after the third fact. However, no more mother_of facts remain, so G 1 fails. Lastly, we try to resatisfy our main goal,

but no more sibling_of facts or rules remain. We print out no and stop.

4. Some Examples

The first example we will look at is some simple list manipulation rules. First we will need to know some Prolog

list notation. In Prolog, the notation [a, b, c] is identical to the LISP ’(a b c). The [and] surround lists in

Prolog, and the comma separates list items. The construction [X|Y] stands for the list whose first element is X and

whose tail is Y. (This is Prolog’s analog of the car and cdr operations of LISP.) The empty list is simply [].

We are now ready to write a rule for finding the last element of a list. The last element of a list of one member is

that member. This gives us the rule

last(X, [X]).

We use this rule as the basis in a recursive definition. If the list is of more than one element, the last element of the list

is the last element of the tail of the list:

last(X, [_|Y]) :- last(X, Y).

(The variable ‘_’ here is Prolog notation for a nameless variable. Multiple ocurrences of _ in a rule do not have to stand

for the same thing.) One way to read this rule is "if X is the last element of a list Y then it is also the last element of

the list formed by adding one thing to the front of Y."

Using the same ideas we may write next_to, which determines if two atoms are next to one another in a list:

next_to(X, Y, [X, Y|_]).
next_to(X, Y, [_|Z]) :- next_to(X, Y, Z).

The first rule here succeeds if first two elements of the list are X and Y. The second rule is the recursive case: it

succeeds if X is next to Y in the tail of the list.

Our most ambitious project is to write a rule for appending two lists. To do this we note that appending the empty

list to another list should simply produce the other list. If the first list is not empty, then we employ this rule: "if

Result is L1 appended to L2, then Result must have the same first element as L1." This is the translation of

these ideas:

append([], L, L).
append([Head|L1], L2, [Head|Result]) :- append(L1, L2, Result).

Because of the way that Prolog works, we may define the first two rules in terms of append:

new_last(Elem, List) :- append(_, [Elem], List).

new_next_to(Elem1, Elem2, List) :- append(_, [Elem1,Elem2|_], List).

Prolog - 3 - April 13, 1988

This is hard to believe at first because we (incorrectly) like to think of rules as functions with certain parameters as input

and others as output. Specifically, we think of the first two parameters of append as input, but in new_last, the

second and third parameters of append are input, and the first is not used at all. Prolog, however, thinks of rules as

conditions which it must satisfy by making the necessary instantiations. Variables become output and input based on the

instantiations Prolog makes. The best way to explain the action of new_last above is to read it as a rule: "Find the

quantity Elem such that when you append an arbitrary list to it, the list List is produced." The rule new_next_to,

likewise, succeeds when quantities Elem1 and Elem2 exist such that List is produced when we append arbitrary lists

on either side of Elem1 and Elem2.

The final example is a smaller version of the doctor program our class wrote earlier in the year.

/* Word changes */
change_word(you, i). /* you --> i */
change_word(french, german). /* french --> german */
change_word(are, ’am not’).
change_word(do, no).
change_word(X, X). /* Default case */

/* Phrase changes */
change([], []). /* End of recursion */
change([Head|Tail], [New_Head|New_Tail]) :- /* Otherwise... */

change_word(Head, New_Head), /* Change head */
change(Tail, New_Tail). /* and tail */

The facts of change_word tell how to change single words. We could allow for more words to be changed by adding

more change_word facts. (The last fact picks up any words that were not in the change list. It matches everything

but does not change anything.) The rules of change tell how to change a sentence by changing its first word and

(recursively) its tail. If we ask the question

?- change([do, you, speak, french], X).

Prolog responds

X = [no, i, speak, german]

It is interesting to note that change can be driven backwards, that is, we can find the patient’s question given the

doctor’s response. To the question

?- change(Y, [no, i, speak, german]).

Prolog answers

Y = [do, you, speak, french]

Prolog just uses the change_word mapping the other way.

5. Relationship To Formal Logic

Prolog is a first attempt at allowing people to program in logic. In logic programming, we supply rules for a model

to follow and see what properties of the model those rules imply. The language finds answers to our questions about the

model consistent with the rules without our having to specify how to find those answers. There are at least two advan-

tages to this approach: we do not have to know how to find the solution, and, if we decide that we want an answer to

another question about the same model, we need only ask the question, rather than finding another algorithm to answer

that question.

A specific application of these ideas is known as theorem proving. We enter axioms into an automated theorem-

prover, which will combine the axioms in new and increasingly clever ways to prove theorems about the system. For

Prolog - 4 - April 13, 1988

example, we could take as our axioms the four postulates of Euclidean geometry and expect as output every theorem that

you proved as a geometry student in middle school, and many others besides.

Prolog can, in fact, be seen as a theorem prover for the class of problems representable in a restricted form of the

predicate calculus. The predicate calculus deals with statements like

\ ⁄— x (man(x) → human(x)) ,

which reads, "if someone is a man then they are human." Statements in the predicate calculus involve the quantifiers \ ⁄—

and —
—
—

 together with the logical operations <→ (biconditional), → (implication),  (or), & (and), and ¬ (not). These state-

ments may be translated into a set of clauses, and-ed together. Each clause is in turn composed of a group of terms, or-ed

together. These terms are either functions of known constants (such as "human (john)") or functions of variables ("human

(X)"). Each of these functions, or terms, may be negated or unnegated. Thus one clause looks like:

f 1(x 1)  f 2(x 2)  . . .  f k (xk)  ¬g 1(y 1)  ¬g 2(y 2)  . . .  ¬gn (yn) .

Using the definition of implication and DeMorgan’s rule, we rewrite this as


 g 1(y 1) & g 2(y 2) & . . . & gn (yn) 

 → 
 f 1(x 1)  f 2(x 2)  . . .  f k (xk) 

 .

The entire predicate calculus statement is expressed as a set of these clauses. Now that we have put the clauses in this

nice form, we would like to test theorems. We may do this by testing the logical not of the potential theorem against the

clauses of the model. If the negation of the potential theorem results in a contradiction, then the potential theorem is pro-

ven, that is, it is a consequence of the clauses in the database. (If we derive the empty clause, which is the clause with

nothing on either side of the implication sign, then we have found a contradiction.) The process of showing that adding a

clause to the database results in a contradiction is called resolution. One step in the resolution process is a unification; it

is accomplished by combining two clauses.

It can be shown that resolution is both complete and correct. Completeness means that if something is a theorem,

resolution will be able to derive the empty clause. Correctness means that if resolution can derive the empty clause from

a potential theorem, then it really is a theorem. These are the properties we want; the only problem is that we do not

know the correct way to combine clauses: we might unify many clauses before we find a contradiction.

However, if we restrict ourselves to the subset of clauses which are of the form


 g 1(y 1) & g 2(y 2) & . . . & gn (yn) 

 → f (x)

the problem becomes easier. This type of clause is called a Horn clause, and it can be expressed in Prolog as

f (x) :- g 1(y 1) , g 2(y 2) , . . . , gn (yn).

(Remember that ‘:-’ may be read "is implied by.") When we enter facts and rules into Prolog, they are entered into a

database as clauses. Theorems are tested by asking questions of Prolog:

?- q (z).

In fact, the ‘?-’ is just syntactic sugar for the "headless" Horn clause

:- q (z).

Asking this question is equivalent to trying to add ¬q (z) to the database. Prolog uses the resolution principle to attempt

to derive the empty clause from the negation of the question. In fact, when we discussed the computational model for

Prolog, we were stating the resolution principle for Horn clauses. When Prolog matches relation names and instantiates

variables, it is unifying two Horn clauses.

Prolog - 5 - April 13, 1988

Prolog - 6 - April 13, 1988

