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PROBLEM STATEMENT

Observe random variable Y modeled by one of {g(y|θ)}θ∈Ω.

Estimate the state of nature θ with maximum likelihood.

θ̂ = argmax
θ∈Ω

log g(y|θ)

∂

∂θ
log g(y|θ)

∣∣∣∣
θ=θ̂

= 0 (1)

• Difficult to solve transcendental equation.

Often resort to approximations or numerical solutions.

• The constraint θ ∈ Ω may complicate the derivative condition

(1) at boundaries of Ω.

✬ ✩
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INCOMPLETE-DATA MODEL

Imagine two sample spaces, X and Y , and a map h : X → Y .

X

Complete
Data

Y

Incomplete
Data

X (y)
y

h

{f(x|θ)}θ∈Ω

{g(y|θ)}θ∈Ω

• Occurrence of x ∈ X implies occurrence of y = h(x) ∈ Y .
• However, only y = h(x) can actually be observed.

Such an observation reveals only that x ∈ X (y).

• The sampling densities g and f are related by

g(y|θ) =
∫
X (y)

f(x|θ) dx

• In a given problem Y is fixed but X can be chosen.

✬ ✩
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THE EM ALGORITHM

The complete-data space is chosen somehow.

The EM algorithm then consists of repeating two steps.

Define the expectation of the complete-data log likelihood

Q(θ|θ′) = E[log f(X|θ) | y, θ′] .

Let θ(0) ∈ Ω be any first approximation to θ∗. Then repeat

E-step Compute Q(θ|θ(p))

M-step Let θ(p+1) = argmaxθ∈Ω Q(θ|θ(p))

We want θ(p+1) to maximize log f(x|θ), which is unknown.

Do the next best thing by maximizing its expectation

given the data y and the current fit θ(p).

Why the EM algorithm?

• The constraint θ ∈ Ω can be incorporated into the M-step.

• The likelihood g(y|θ(p)) of the estimates is nondecreasing.

• It is simple and stable.

What about X?

X is chosen to simplify the E and M steps. Often the incomplete-

data y is augmented with data that makes estimating θ easy.

For example, if g(y|θ) is a family of mixtures ofM densities, choos-

ing X = Y ×{1 . . .M} allows each observation have a mark indi-

cating the density it came from.

✬ ✩

✫ ✪
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NON-DECREASING LIKELIHOOD

XComplete
Data

Y Incomplete
Data

X (y)
y

f(x|θ)
g(y|θ)=∫

X (y) f(x|θ) dx

The conditional density of X given Y = y is

k(x|y, θ) =



f(x|θ)∫
X (y) f(x|θ) dx = f(x|θ)

g(y|θ) x ∈ X (y)

0 x /∈ X (y)

So on X (y), log g(y|θ) = log f(x|θ)− log k(x|y, θ).

Taking the conditional expectation converts this into

log g(y|θ) = Q(θ|θ(p))− Ek(x|y, θ(p)) log k(X|y, θ)
so that the increase in likelihood between iterations is[

Q(θ(p+1)|θ(p))−Q(θ(p)|θ(p))
]

+ Ek(x|y, θ(p))
[
log k(X|y, θ(p))− log k(X|y, θ(p+1))

]
The first term is ≥ 0 because θ(p+1) maximizes Q(·|θ(p)).

The second is

−Ek(x|y, θ(p)) log

[
k(X|y, θ(p+1))

k(X|y, θ(p))

]
≥ − logEk(x|y, θ(p))

[
k(X|y, θ(p+1))

k(X|y, θ(p))

]

= − log

∫
X
k(x|y, θ(p+1)) dx

= 0

✬ ✩

✫ ✪
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PROPERTIES OF THE EM ALGORITHM

What the EM algorithm gives you:

1. The EM algorithm is simple and fairly robust.

2. EM can incorporate parameter constraints.

3. EM guarantees monotonically nondecreasing likelihood.

4. A strict maximizer of the likelihood is therefore a stable point

of an EM algorithm...

5. ...and if the likelihood is bounded above, the sequence of like-

lihoods has a finite limit L∗.

L∗ may be the global maximum, a local maximum, a stationary

value, or just a stable value of the EM iteration.

6. If Q(θ|θ′) is continuous in both arguments, then L∗ is at least
a stationary value.

7. Under conditions, L∗ is a local maximum of the likelihood.

8. Under more conditions, if θ(p) converges then its limit θ∗ is a
local maximizer.

The chief disadvantage of EM is slow convergence.

Gradient algorithms, such as Newton’s method for finding roots

of ∂
∂θ
g(y|θ), give quadratic convergence in a neighborhood of the

maximizer.

✬ ✩

✫ ✪
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A SIMPLE EXAMPLE

Observe Y = S +N where X ⊥ N and

N ∼ N(0, σ), σ known,

S ∼ N(0, θ), θ unknown.

Estimate θ given the observation Y = y. The MLE is

θ̂ = argmax
θ≥0

log g(y|θ)

where of course

g(y|θ) = N(0, σ + θ)

= (2π(σ + θ))−1/2 exp−y2/2(σ + θ)

Find maximizing θ:

∂

∂θ
log g(y|θ) = −1

2

1

σ + θ
+
1

2

y2

(σ + θ)2
= 0

θmax = y2 − σ

If y2 − σ ≥ 0, set θ∗ = θmax.

Otherwise, note g(y|θ) is decreasing on [y2 − σ, ∞), so put θ∗ as
close to θmax as possible:

θ∗ = max(0, y2 − σ)

✬ ✩

✫ ✪
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THE SAME EXAMPLE WITH EM

Apply EM to this problem with complete-data X = (S,N).

Its density is f(x|θ) = fS(s|θ)fN(n).

(1) E-step:

E[log f(X|θ) | y, θ(p)] = E[log fS(S|θ) | y, θ(p)]

+ E[log fN(N) | y, θ(p)]

= E[−1

2
log θ − S2

2θ
| y, θ(p)]

+ E[−1

2
log σ − N2

2σ
| y, θ(p)] + o. t.

= −1

2
log θ − 1

2θ
E[S2 | y, θ(p)] + o. t.

(2) M-step:

θ(p+1) = E[S2 | y, θ(p)] (as expected)

Now let µS(y) = E[S | y, θ(p)], and note

E[S2 | y, θ(p)] = E[(S − µS(y))
2 | y, θ(p)] + µS(y)

2

Given Y = y, S is N(θy/(σ + θ), σθ/(σ + θ)), so

θ(p+1) =
σθ(p)

σ + θ(p)
+

(
θ(p)y

σ + θ(p)

)2

✬ ✩

✫ ✪
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THE EM ITERATION

In this simple case, we can find the fixed point analytically.

At the fixed point, θ(p) = θ(p+1) = θ∗:

θ∗ = y2

(
θ∗

σ + θ∗

)2

+ σ
θ∗

σ + θ∗

whose only solutions are 0 and y2 − σ, whence

θ∗ = max(0, y2 − σ)

just as before.

A sample EM iteration is shown below.

1 2 3 4 5

1

2

3

4

5
(y2=5, σ=1)

θ(p+1)=θ(p)

θ(0) θ(1) θ(2) θ∗=y2−σ

θ(p)

θ(p+1)

✬ ✩
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A BOUND ON RELATIVE ENTROPY

Recall the relative entropy D(p‖q) = Ep log p(X)
q(X) .

Let D(S) denote the set of densities having S as a support.

For densities p ∈ D(X (y)),

−D(p(x)‖f(x|θ)) = −Ep log
p(X)

f(X|θ)
= Ep log

f(X|θ)
p(X)

≤ logEpf(X|θ)
p(X)

= log

∫
X (y)

p(x)
f(x|θ)
p(x)

dx

= log

∫
X (y)

f(x|θ) dx

= log g(y|θ) ,

allowing a bound on the distance of any density on X (y) from

f(x|θ):
D(p(x)‖f(x|θ)) ≥ − log g(y|θ)

Since g(y|θ) = P{X ∈ X (y)} ≤ 1, the bound is ≥ 0, and positive

unless X (y) is the entire space X .

The domain constraint thus allows a positive bound.

✬ ✩

✫ ✪
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ENLARGING THE ORIGINAL PROBLEM

XComplete
Data

Y Incomplete
Data

X (y)
y

f(x|θ)
g(y|θ)=∫

X (y) f(x|θ) dx

Recall the conditional density of X given Y = y is

k(x|y, θ) =
{

f(x|θ)
g(y|θ) x ∈ X (y)

0 x /∈ X (y)

On X (y), g(y|θ) = f(x|θ)/k(x|y, θ), so

− log g(y|θ) = Ek(x|y, θ) log
k(X|y, θ)
f(X|θ) = D(k(x|y, θ)‖f(x|θ))

Max’ing likelihood is thus equivalent to min’ing relative entropy:

θ̂ = argmax
θ∈Ω

log g(y|θ) = argmin
θ∈Ω

D(k(x|y, θ)‖f(x|θ))

More interesting, the conditional k(x|y, θ) has X (y) as a support,

and it attains the lower bound on D(p‖f(x|θ)). It is thus the

member of D(X (y)) which is closest to f(x|θ):
k(x|y, θ) = argmin

p∈D(X (y))

D(p(x)‖f(x|θ))

We might as well solve this more complicated extremal problem:

θ̂ = argmin
θ∈Ω

min
p∈D(X (y))

D(p(x)‖f(x|θ))

✬ ✩

✫ ✪
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ALTERNATING MINIMIZATION

This is an instance of the alternating minimization of Csiszár and

Tusnády for finding the distance between convex sets A and B:

d̂ = min
a∈A

min
b∈B

d(a, b)

The initial estimate is some a(0) ∈ A, and then

b(0) = argmin
b∈B

d(a(0), b) ; a(1) = argmin
a∈A

d(a, b(0)) ;

b(1) = argmin
b∈B

d(a(1), b) ; a(2) = argmin
a∈A

d(a, b(1)) , etc.

A Ba(0)

a(1)

a(2)

b(0)

b(1)

b(2)

The distance at each stage clearly decreases.

Csiszár and Tusnády have shown that if the distance measure d

satisfies certain conditions, the alternating minimization converges

to the minimum distance between A and B.

✬ ✩

✫ ✪
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EM AS ALTERNATING MINIMIZATION

For the EM algorithm, the convex sets are Ω and D(X (y)), and

the distance measure is relative entropy.

The minimization starts with θ(0) and then

k(0) = argmin
p∈D(X (y))

D(p(x)‖f(x|θ(0)))

θ(1) = argmin
θ∈Ω

D(k(0)(x)‖f(x|θ))
k(1) = argmin

p∈D(X (y))

D(p(x)‖f(x|θ(1))) , etc.

The odd-numbered minimizations are easily done, because we know

already that the conditional density k(x|y, θ(p)) minimizes entropy

relative to f(x|θ(p)). Thus k(p)(x) = k(x|y, θ(p)).

As for the even steps, note

D(k(p)‖f(x|θ)) = Ek(x|y, θ(p)) log
k(X|y, θ(p))

f(X|θ) = −Q(θ|θ(p)) + o. t.,

so minimization of the entropy is equivalent to maximization of

Q(θ|θ(p)), which is the E and M steps of the EM algorithm rolled

in to one.

Other instances of the Csiszár and Tusnády alternating minimiza-

tion are the Blahut-Arimoto algorithm for finding the capacity of

a communication channel, and Cover’s algorithm for finding the

log-optimal portfolio for the stock market.

✬ ✩

✫ ✪
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SUMMARY

• The EM algorithm can be used in classical and Bayesian set-

tings when the goal is to maximize likelihood.

• The method works by defining a set of complete-data which, if

it were available, would make the problem simpler. The origi-

nal maximization in the incomplete-data space is transformed

into a series of simpler maximizations in the complete-data

space.

• The EM algorithm guarantees nondecreasing likelihood, and

that maximizers of the likelihood are stable points of the iter-

ation.

• The EM algorithm is one of a family of methods that transform

a single difficult minimization into a series of simpler ones.

The general paradigm is the alternating minimization of the

distance between convex sets.

✬ ✩

✫ ✪
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