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Nonlinear Time Series

Familiar nonlinear state-space model

Tpi1 = g(zn) + n rn, ~ N (O, 52)
yn = Cxn =+ sp SnNN(O,O‘Q)
for vector x and y
There is a corresponding continuous-time diffusion

The Bayes net shows dependences among this
collection of variables
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e Fundamental Inference Problem

Given yp, for various n € {1,..., N} (with gaps),
estimate xp,, 1 < n < N.
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Learning Problems

Inference: Given y, estimate x

Large-scale (e.g., weather) applications solve
tractable approximations of this problem

We focus on the other end of the spectrum,
computationally expensive procedures that:

e Account for nonlinear dynamics g(-)

e Provide error bars, up to and including
estimates of the probability density of xj,

e EXxplain how to properly weight the members
of an ensemble according to cumulative credibility

Related Problems

Smoothing, filtering are specific versions of
inference as we have defined it

Sampling (e.g. of x given y) can be a building
block for inference

Parameter learning: estimate g(-), , o, or other
parameters

Structure learning: determine network structure
(e.qg., identify covariates influencing x)
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Motivating Applications

General nonlinear systems

T hese systems exhibit threshold effects, shocks,
fronts

Nongaussian posterior distributions
Skew distributions or heavy tails
Multimodal posterior: > 1 distinct outcome

Dynamics of Lagrangian features

The internal state of fronts can be viewed as
satisfying a state equation for a (learned)
dynamic g(-)

These Lagrangian features are low-dimensional
and allow computationally expensive modeling

T hese two broad areas overlap

E.g., nonlinearities couple fourier modes, causing
coherent fronts to build rather than dissipate
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Double-Well Model

Particle in a potential well given by
f(z) = =222+ 2% and g = [/

Two minima at =1 and one stationary point at O

Trivial climate
cf. Miller et al., Eyinck & Restrepo, etc.

Corresponds to the continuous-time diffusion

dry = —g(xt) + x dBy xk constant
Yyt = Tt + St st ~ N(0,02)

Approximate by d-width finite differences

Tp41 = xn —09(Tn) +7rn ™™ ~ N(O, 5K2)
Yn = Tn + Sn SnNN(an'Q)

Need 6|g(-)|,Vdr < 1
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Sample Paths

k2 =0.24, ET.1 ~ 4600 (6 =.01, 21 =1, T = 10%)

o oy

Limiting density poo(x) o exp(—2f(x)/k?)

0.045

Histogram:
Ensemble of 10000, -
r1 =0, T =103
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Can we compute more than just limit densities
using Monte Carlo?
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MCMC: Essence

Monte Carlo integration...

1

N
Ef(X) = /f(a:)w(a:) do~ Y f(z) (a from )
t=1

Typically x4 are sampled iid: but this can be hard

...driven by Markov chain samples

Craft a MC having «(-) as its stationary dist'n
Draw the x;'s above from this MC
They are not independent, but they are from =«

The long-term sample averages will converge,
same as the ensemble averages do

We used this trick to find histograms:

Ensemble averaging goes vertically
MCMC sampling goes horizontally
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MCMC: Metropolis-Hastings

One particular kind of MC uses the...

Metropolis-Hastings recipe

Say the MC is now at = (time t)
Draw a candidate z’ from q(z'|z)
Replace = by the new 2’ with probability

m(z’) g(z|a’) )
' m(z) (2’ | 2)

Under broad conditions, sample mean — Ef(X)
But: rate of convergence is critical, and hard to
assess

p = min(l

Can use un-normalized versions of w(+)

Acceptance probability p

Favors increasing the posterior, but allows w(x) to
decrease occasionally

Adjusts for any bias introduced by our choice of q
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MCMC: Time Series

Recall the Bayes network showing dependences

For now, we only want to estimate x> and other
values are known

Apply Metropolis-Hastings recipe:
Propose a new value z, e.g. from N (x5, 6K%)
(¢(a5 | z2) is symmetric)

Compute the ratio

m(@) q(z|a’) _ plag|e1) p(z3|z3)  ply2|o3)
w(z) q(a’|z)  p(xo|z1)p(zz|z2) p(y2|x2)

Combines a smoothness term and a data term

The full MCMC scheme sweeps over all unknown
variables xq,...,xn, proposing changes to each
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MCMC Results

True xp, With data (k=05, 0=1, § =.05, T = 1024)
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Statistics, initial and tail: Mean, RMS, and truth
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MCMC Results: High Noise

True x, With data (k=0.5, c =5, § =.05, T = 1024)
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Two MCMC series (10%:10° downsampled 100:1)

E xyp, o(xzy), truth; histograms of x15, x5, 30
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MCMC Results: Sparse Data

True xy with data (k=0.5, c =0.2, § = .05, T = 1024 )
But: downsample 16x (data rate <« simulation)
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Data assimilation versus path smoothness

Near-gaussian statistics disallow fast jumps
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Midpoint

MCMC

Represents global density with a single, random
sample which is evolved across simulation epochs

Particle Filter

Represents density at a particular time with a set
of random samples which are pushed forward in
physical time

Bootstrap sample: represent distribution with
samples, not parameters like means and
covariances

Potentially much more expressive than Gaussian
modeling
Handles heavy tails
Handles multimodal distributions

Particle representation has a natural affinity with
ensembles which lends itself to exploitation by
practical forward modelers
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Bootstrap Representations

Approximate p with point masses drawn from p
_ K
p(z) ~ R~1 Zk:l o(x — x(k))
Fully analogous to the familiar

Ef@@) = [ f@)pa)de~ K13 f@®)

Conditioning

Observe a certain y that is related to x above

p(x|y) = p(y | ) p(:v) /p(y)

~ ( k)Y § (2 — D)
= Z wy, 6(x — .CU(k)) <Z wy, = 1)
k=1

Further conditioning multiplies new factors into wy

Resampling
Some weights will decrease to near zero

Regeneration: sample K’ new points with
replacement from the K current point masses
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Importance Sampling

We can develop a bootstrap approximation to p
even when we can not sample directly from it

Use importance sampling
Suppose: can sample from =« (x)
If m7(x) > 0 where-ever p(z) > 0, represent:

p(z) =3 wyp sz —2®)
wy 1= p(z)/m(x), and Y wip =1

T his works because
p(x)
Ef@)= [ f@p@)ds = [ f()
m(x)
and we absorb the fraction into the modified
weights

w(x) dx

w(-) is the importance distribution

Can show that the quality of the approximation
decreases as var(wy) increases
(Ideally, all samples are counted equally)
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Particle Filter Algorithm

Begin the cycle with weighted representation

p(n | y1m) ~ { (wg, M) HL
Push sampled +(k)'s thru nonlinearity, plus noise:

20 = g@®) +r® ) L N(0,x?)

k
P(nt1 Y1) ~ { ohow Hey
Condition on new data y,, 41 by reweighting

p(Tnt1 | Y1mt1) ~ § (wp 2S) HE

k
wg < P(Yn4-1 | wge)w)

state
extrapolation

\4

data
assimilation

Y YY YY Y Y Y Y YVYY Y Y
o AP0
at time t+1
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Sample Paths

True xp, With data (k=05, 0=1, § =.05, T = 1024)

)

Particle filter is 1-sided; a 2-sided version exists
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— Particle Filter
— MCMC
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Use a different importance density to patch this
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Future Work

MCMC
Proposals changing more than one value at a time

Proposals using physical criteria

Particle Filter
LLoss of particle diversity

Measure this (e.g. via entropy) and adapt the
importance density

Futures

More systematic comparisons, e.g. using an L1
error between target and estimate
Kalman filter, MCMC, and particle filter

Precise comparisons with the literature, e.q.
Eyink and Restrepo

Reasonable proposals for higher-dimensional
systems
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