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Symmetric Data

Model and thus classify pixels (2-d feature
vectors) from these images
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Use probability under a normal mixture which has
been trained on identified chips (supervised) or
on pooled pixels (unsupervised)

Model should honor symmetry with respect to
flipping the magnetic field

As models become more complex (more features,
more pixels) the fit must be as well-constrained
as possible: find better models faster
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A Simple “Wrapper” Fails

• A clean fix?

1. Start the EM iteration at a symmetric model

2. Add symmetric ghost data points

Alas, must also alter the EM algorithm internals:

3. Re-apply symmetry constraint at every
iteration to patch floating-point inconsistencies

• Structural problem arises

EM cannot condense paired bumps into
self-symmetric bumps: EM updates stagnate

So, must introduce two types of bumps:
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Finally, doubling runtime motivated a closer look
at symmetry in mixture density estimation
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Basic Constraint: x
D
= Ax

A must be nonsingular
...else Ax would fail to have a density
...iterating shows x

D
= Apx for integer p

1 =
∫

p(x) dx =
∫

p(Ax) dx = |A|−1 ∫
p(y) dy = |A|−1

Cyclic restriction: AP = I for some period P .
G = {I, A, . . . , AP−1} is isomorphic to the cyclic
group of order P .

Some multiple symmetries are encoded by finite
groups that are not cyclic

Continuous (scale) or aperiodic (translation)
invariances: integrate wrt Haar measure

• Examples

Original example: A =
[
−1 0
0 1

]
, P = 2

A is a general rotation matrix: encode a variety of
geometric constraints

A is a permutation: enforce within-feature-vector
distributional constraints

A =
√
−1 I: provide real-imaginary symmetry for

complex x (P = 4)

Introduction
A-3(4)



Specialize to Normal Mixtures

• Usual normal mixture setup

p(x) =
K−1∑
k=0

γkN(x; µk,Σk)

with
∑K−1

k=0 γj = 1, µk arbitrary, Σk > 0

(µk,Σk) are distinct to preserve identifiability

Choose the free parameters

Θ = {(γk, µk,Σk)}K−1
k=0

using maximum likelihood

ΘML = argmax
Θ∈Θ

log p(X;Θ)

with training data X = {xn}N
n=1 and EM

• Account for the symmetry constraint

Symmetry of p is enforced by a modified EM

iteration which we will derive

But first, we examine the effect of the constraint

on the structure of the mixture model
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Reinterpret the Constraint

The distributional constraint is equivalent to

(γ, µ,Σ) ∈ Θ ⇒ (γ, Aµ, AΣAT) ∈ Θ (*)

Note: When θ = (γ, µ,Σ) ∈ Θ, write Aθ for (γ, Aµ, AΣAT).

A permutation π of {0, . . . , K−1} groups mixture
components that jointly have symmetry

π counts up, looking for the first match:

π(k) = arg min
l:θl=Aθk

(l − k) mod K

...the inverse counts down from l:

π−1(l) = arg min
k:θl=Aθk

(k − l) mod K

Can show p(x) = p(Ax) using π; the reverse
implication follows from L.I. of Gaussians

• Cycles of π are key

Recall: Describe permutations by their cycles,
partitioning mixture components {0, ..., K−1}

Each cycle C = (k1, . . . , kQ) is a group of mutually
constrained components (γk, µk,Σk), k ∈ C
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The Structure of Cycles

A single component θ = (γ, µ,Σ) can satisfy the

constraint itself: θ = Aθ, Q = 1

A component wraps around via Q = P distinct

components: θ, Aθ, ..., AP−1θ (below left)

Each intermediate component is unconstrained

General case: θ wraps around via Q < P distinct

intermediaries, each satisfying θ = AQθ

Q = 6

θ0

θ1=Aθ0

θ2=A2θ0

θ3=A3θ0

θ4=A4θ0

θ5=A5θ0

Q = 3

θ12

θ13=Aθ12

θ14=A2θ12

θ12=A3θ12

θ13=A3θ13

θ14=A3θ14

Q = 2

θ16

θ16=Aθ15

θ15=A2θ15

θ16=A2θ16

θ15=A4θ15

θ16=A4θ16

Above schematic shows component relationships

P = 6 (“rotation by 60◦”), three cycles shown

All P versions of θ are drawn: θ, Aθ, ..., AP−1θ

The P/Q aliases are drawn with the same color
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Enforcing the Constraint

• Specify the cycles

Given a symmetry A with period P

Give the number of cycles for each integer Q

dividing P (cycle lengths must evenly divide P )
The chosen sets C partition {0, ..., K−1}

Convention: The Q components of a cycle are
numbered sequentially, say k, k+1, ..., k+Q−1.
Internal constraint: θk = AQθk for each k ∈ C
Sharing constraint: θk+1 = Aθk for k, k + 1 ∈ C

• Enforce with Lagrange multipliers

Enforcing µ − Aµ = 0 implies a Lagrangian term
lµ = λT(µ − Aµ)

Enforcing Σ− AΣAT = 0 calls for a matrix Λ, one
for each entry of D = Σ− AΣAT:

lΣ =
∑
i,j

ΛijDij = tr DTΛ

= tr(Σ− AΣAT)Λ = trΣ(Λ− AΛAT)

Equivalently, use lΣ−1 = trΣ−1(Λ− AΛAT)
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Related Work

• Parameter-sharing

Reduce the dimensionality of Θ as that of x grows

Covariances like σ2I are trivial in EM
Generally: Zero-ing blocks of Σ−1 is simple

• Eigendecomposition

Σk = λkHkDkHT
k for orthogonal Hk

λkDk is the diagonal eigenvalue matrix; |Dk| = 1
(Fraley, Raftery; Celeux, Govaert)

Related speech models (Gales)

• Mixtures of factor analyzers

Σk = HkHT
k + Dk,

low-rank Hk and diagonal Dk
e.g., Ghahramani and Hinton

• Symmetric Normals

The Gaussian (K = 1) case with symmetry
expressed as an algebraic group has been
deeply elucidated by Andersson, Madsen, et al.
(sufficiency, estimation, consistency, ...)
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Sufficient Statistics

Rewrite the log-likelihood of component k

log |Σk|+
∑N

n=1
τn|k (xn − µk)

TΣ−1
k (xn − µk)

= log |Σk|+ (mk − µk)
TΣ−1

k (mk − µk) + trΣ−1
k Sk(mk)

using tr AB = tr BA idiom & K sufficient stats:

mk =
N∑

n=1

τn|k xn Sk(m) =
N∑

n=1

τn|k (xn−m)(xn−m)T

Account for sharing constraint by writing terms of
one cycle k = 0, ..., Q − 1 with new statistics

m̄ =
∑Q−1

k=0
τ̄k A−kmk

S̄ =
∑Q−1

k=0
τ̄k A−kSk(A

km̄)Ak

Transform back to the θ0 coordinates and average
there since θ0 = Aθ1 = · · · = AQ−1θQ−1

This cycle’s log-likelihood, with two terms for the
internal constraint (θ0 = AQθ0) becomes

− log |Σ0| − (m̄ − µ0)
TΣ−1

0 (m̄ − µ0)− trΣ−1
0 S̄+

2λT(µ0 − AQµ0) + trΣ−1
0 (Λ− AQΛATQ)
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EM Parameter Updates

We update one cycle of Q linked components
which we assume are indexed 0, ..., Q − 1

Differentiating to solve for (µ0,Σ0) gives

γ̂0 =
1

NQ

Q−1∑
k=0

N∑
n=1

τn,k

µ̂0 =
1

P ′

P ′−1∑
r=0

A−Qr m̄ where P ′ = P/Q

Σ̂0 =
1

P ′

P ′−1∑
r=0

A−Qr
[
S̄ + (m̄ − µ̂0)(m̄ − µ̂0)

T
]
AQr

Updates (µ̂0, Σ̂0) are transformed repeatedly by A
and used for (µ1,Σ1), ..., (µQ−1,ΣQ−1)

(µ0,Σ0) are updated with a nested average of
transformed sufficient statistics (mk, Sk)

The inner averages (prior page) are across Q
terms, one for each component in the cycle

The outer averages, above, sum over the
symmetries in the order-P ′ cyclic subgroup of G
to enforce invariance with respect to AQ
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Implementation

New information required:

symmetry matrix A (from which P is known)

generalized K: the number of bumps per

feasible Q, where Q | P

• Procedure

Standard EM finds
(
mk,Σk

)K−1

k=0

Constrained EM follows these E and M steps with

a constraint-enforcement step

This operation loops over each cycle of

components, performing a P = QP ′-fold

averaging in two phases as above

• Computation time

Constraining takes O(Kd3) operations, dwarfed by

the O(NKd3) in each ordinary EM step

If all cycles have Q = P , the constrained algorithm

is equivalent to copying each x ∈ X, P times

(x, Ax, ..., AP−1x) plus unconstrained EM, but

requires P times less computation.
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Constraint in Action

Shown: A =
[
−1 0
0 1

]
, P = 2, K = 6, N = XXX,

best of 10 runs
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Fits are more stable
repeated runs are consistent

Fits are higher-quality
obey constraint (of course)
fewer elongated components
robust identification of supergranulation
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Learned Clusters: SoHO/MDI

Class 1 (“Quiet”) Model Class 1 Model Fit
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Class 2 & 3 (“Active”) Models Class 2 & 3 Model Fits
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Shown:
Class 1: K = 6, one pair, four singletons
Classes 2, 3: K = 7, three pairs, one singleton

Currently:
Class 1: K = 8, two pairs
Classes 2, 3: K = 20, 8 pairs
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