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Geofest Design Document 

1. Introduction

Geofest uses stress-displacement finite elements to model stress and strain due to elastic
static response to an earthquake event in the region of the slipping fault, the time-
dependent viscoelastic relaxation, and the net effects from a series of earthquakes. The
physical domain may be two- or fully three-dimensional and may contain heterogeneous
rheology and an arbitrary network of faults. The software is intended to simulate
viscoelastic stress and flow in a realistic model of the earth’s crust and upper mantle in a
complex region such as the Los Angeles Basin.

2. Mathematical Equations for the Visco-Elastic Mechanics Problem

We describe the quasi-static mathematical equations for visco-elastic materials, which is
the assumed material type of the solid earth being modeled. In the following, �  and �
denote second-order stress tensors for stress and strain fields, respectively, and u is the
displacement field. The summation convention is used for repeated indices; a comma is
used to denote a partial derivative with respect to a spatial dimension in a Cartesian
coordinate system. In 3R , for example, we have
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The considered equations include
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the constitutive equation, where ijklc  are material-specific constants, and
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where vp
� is the viscoplastic strain, and ij� are viscoplastic strain rates which are given

functions of the stress field. The problem to be solved is formulated as an initial-
boundary-value problem in a domain nR�� , where 2n � or 3 . We want to find a
displacement field ( , )u x t  and a stress tensor field ( , )ij x t�  which satisfy equations (1.1)
to (1.4) for all x�� and [0, ], 0,t T T� �  such that 
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where 0u and 0�  are  the initial displacement and stress fields, respectively,

1 2�� � �� � �� is the domain boundary, n is an outward normal vector to 2�� , and
( , )ig x t  and ( , )ih x t  are prescribed boundary displacement and tractions, respectively.

For isotropic (Newtonian) material, the material constants in (1.2) can be expressed as

( )( ) ( )ijkl ik jl il jk ij klc x x� � � � � � � �� � � (1.6)

where � and �  are known as Lame parameters, which are related to Yong’s modulus E
and Poisson’s ratio�  by  
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3. Finite Element Formulation 

In a finite element approximate solution to problem (1.1) - (1.5), we seek an approximate
displacement field ( , )iu x t S� , where S  is a finite-dimensional trial solution space with
each iu  in S  satisfying i iu g�  (the essential boundary condition) on 1�� . We also
define a finite-dimensional variation space iV  with each iw V� satisfying 20 on iw � �� .

iu  must satisfy the “weak form” of the problem (1.1) - (1.5), given below:
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where ( , ) , ,i j i j j iw w w� � , ij�  is related to iu through (1.2) and (1.3), and n is the spatial
dimension. iw  is sometimes referred to as virtual displacements in solid mechanics.
Under some smoothness assumptions on the involved variables, it can be shown that a
solution to (2.1) is a solution to (1.1) - (1.5) and vice versa.

To find a numerical solution to the finite element problem (2.1), all the variables and the
integral equation in (2.1) are discretized on a finite element mesh. In the Geofest program
implementation, the discrete displacement field hu is defined at nodal points of the mesh,
and stress field h

� and strain field h
�  are defined at the center of a mesh cell (an element).
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Using the definition of (1.6), and using a certain mapping of the indices of , , ,i j k l to
indices ,I J  [2], it can be shown that 

( )D u� �� (2.2)
where, in 2R ,
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where aN is the “shape function” associated with node a ; aN takes unit value at node a
and vanishes on neighboring nodes of a ; ad is the displacement value at node a  which is
an unknown to be computed. Let ie be a basis vector in nR with its i-th component equal
to one and other components equal to zero. We have
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where ac are arbitrary constants.

Substituting the previous definitions into (2.1), we get a matrix equation for the
displacement vector d

1 2( )Kd F F F� � � (2.3)
where [ ] m m

pqK k R �

� �  is the so-called stiffness matrix. K  is symmetric and positive
definite, and
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where dof
an is the degree of freedom at node a . An entry of matrix K ,  pqk , has the form 
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where global equation numbers ,p q and global node numbers ,a b are related through a
certain defined mapping. In 2R
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1 2 and  F F on the right-hand side of (2.3) are known vectors in mR . 1F  includes the
contributions from the body force and boundary condition terms. And 2

T vp
aF B D d�

�

� ��
is the contribution from the viscoplastic strain.

4. An Implicit Time-Stepping Scheme (Hughes & Taylor)

A time-stepping scheme is needed to compute a visco-elastic finite element solution of
displacement and stress fields at discrete time points over a given time period. Both
explicit and implicit time-stepping schemes can be formulated. The Geofest program
adopted an implicit scheme because of its unconditional numerical stability with respect
to time step sizes. The entire solution process consists of an initial solve of a pure elastic
problem for which the viscoplastic strain rate is set to zero. The pure elastic solution
provides an initial stress field, which is then relaxed over a time period in a visco-elastic
solve for which an implicit stepping scheme is used. This algorithm used by Geofest is
described in the following steps:
      

1. Initialize, set 0n �

a. Form 0K  and 0f
b. Solve 0 0Ku f�

c. 0 0DBu� �

2. Form step stiffness matrix and right-hand side
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5. Update displacement and stress fields
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6. If  (last_time_step) 
                   stop
              Else
                   set 1n n� � ,
                   go back to 2.

In the above scheme, the viscoplastic strain rate, ( )� � , and its Jacobian matrix, ' ( )� � ,
need to be specified. In 2R , they are
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5. Fault Specification and Split Node Implementation

Fault conditions can be specified either as fault elements or as split nodes. With fault
elements, one can specify fault properties such as failure criterion. With split nodes, one
can represent the rate of displacement of a fault surface by assigning the direction and
amount of slip for each node on the fault surface. Typically, a split node has different slip
rates assigned to it on each side of the fault surface, which introduces a discontinuity in
the displacement field to simulate real fault slip. This idea can be illustrated by a simple
one-dimensional example with two elements, as shown in Figure 1.

                                                              Figure 1

It is assumed that elements 1 and 2 are located adjacent to the opposite sides of the fault
surface represented by a dash line between the two elements, and U is the displacement
field. Away from the fault, displacement field has a single value defined at each node of
the 1-D finite element mesh, such as 1

1U  on the left node of element 1 and 2
2U on the right

node of element 2. The node between the two elements is considered a split node since it
lands on the fault. The displacement field has different values at the split node, which are

1
2U  on the side of elements A and 2

1U  on the side of element B. Specifically we can write
1 1 1 2 2 1
2 2 2 1 1 2,U U U U U U� � � � � �

1
1U 1

2U 2
1U 2

2U21
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 where 1 2
2 1U U� is the mean value of displacement at the split node, and 1 2

2 1U U� � �� is
the “splitting” part of displacement that has opposite signs on two sides of the fault line.
In a finite element implementation, the contribution from the splitting displacements can
be formulated as an additional forcing term. This fact can also be shown using the two-
element example. The local stiffness matrix for element 1 can be written as

11 1 1
111 12 1

1 1 11 1
21 22 22 2

UK K F
K K FU U

� �� � � �
�� �� � � �

� �� �	 
 	 
	 

,

which relates local displacements to local force terms. By moving the known quantities
of the above equation to the right-hand side, we have

11 1 1 1 1
111 12 1 12 2

1 1 1 1 11
21 22 2 22 22

UK K F K U
K K F K UU
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(3.1)

.
Similarly for element 2, we have

22 2 2 2 2
111 12 1 12 1

2 2 2 2 22
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“Assembling” the local stiffness matrix equations into a global stiffness matrix equation,
we get

1 1 1 1
11 12 1 1 12 2
1 1 2 2 1 1 2 2
21 22 12 12 2 2 22 2 11 1

2 2 2 2
21 22 3 3 21 1

0

0

K K U F K U
K K K K U F K U K U

K K U F K U

� � � �� �� �
� � � �� �� � � � � �� � � �� �
� � � �� � � �	 
	 
 	 


(3.3)

where iU ’s are global displacements, which are related to the node local displacements
by 

1 1 2 2
1 1 2 2 1 3 2, ,U U U U U U U� � � � .

The global force terms iF  are related to the local ones by 
1 1 2 2

1 1 2 2 1, 3 2,F F F F F F F� � � � .

Equations (3.1)-(3.3) show that the effect of the slips on the split nodes is equivalent to
adding those additional terms on the right-hand side of the finite element matrix
equations. 

Stress and displacement at each time are the accumulations of incremental stresses and
displacements for past time steps. When a slip event occurs, the incremental
displacements are found by applying the split nodes adjustments to the right hand side of
the stiffness equation. After the incremental displacement is obtained, the incremental
stress is found by including the split node contribution to the stress for that time step. In
this way the displacement and stress effects of a slip event are correctly carried forward
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into future time steps, without any need for additional storage for the slip history of the
fault. 
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